پیغام مدیر :
با سلام خدمت شما بازديدكننده گرامي ، خوش آمدید به سایت من . لطفا براي هرچه بهتر شدن مطالب اين وب سایت ، ما را از نظرات و پيشنهادات خود آگاه سازيد و به ما را در بهتر شدن كيفيت مطالب ياري کنید.
بررسی سایش گالینگ روی قالب های تولیدی ضربه ای
نوشته شده در پنج شنبه 28 مهر 1401
بازدید : 194
نویسنده : جواد دلاکان

بررسی سایش گالینگ روی قالب های تولیدی ضربه ای حین کار با ورق فولادی پراستحکام پیشرفته

بررسی سایش گالینگ روی قالب های تولیدی ضربه ای

بررسی سایش گالینگ

به منظور بهبود مقاومت بدنه و کاهش مصرف سوخت. در سالهای اخیر، صنعت اتومبیل سازی بطور گسترده از فولادهای پر استحکام پیشرفته برای تولید اجزای مختلف بدنه خودرو استفاده می نماید. از سوی دیگر، استحکام بالاتر از این نوع فولادها در مقایسه با فولادهای کشش عمیق مرسوم. باعث آن گردید تا به منظور شکل دهی ورق، فشار بالاتری به سطوح ابزار و قطعه کار اعمال شود. این مسأله سبب کاهش طول عمر ابزار میشود.

گالینگ، حالتی از خوردگی چسبندگی، بعنوان یکی از مهمترین عوامل افزایش هزینه های نگهداری قالب و همچنین افزایش نرخ اسقاط مورد توجه قرار گرفت. این تحقیق، به منظور مطالعه سایش گالینگ روی قالب تولیدی درب خودروی پژو 405 حین کار با DC04، انجام گرفت.

با استفاده از آزمون مورد ارائه توسط استانداردهای بین المللی برای سنجش سایش گالینگ. مقاومت به سایش گالینگ در ورق های کشش عمیق مرسوم و ورق پر استحکام پیشرفته مقایسه گردید. اثر عوامل مختلف از جمله ترکیب شیمیایی ورق، عملیات حرارتی و فرآیند نورد ورق. فشار ورق گیر، سختی و زبری قالب روی سایش گالینگ تعیینی است. در پایان، راه حل های مناسب برای کاهش سایش در ابزار نظیر تغییر نسبت وزنی عناصر به کار رفته در ورق اولیه. پوشش دهی ابزار شکل دهی و تغییر در نیروی ورق گیر پیشنهاد شده است.

1-مقدمه

امروزه، افزایش الزامات ساختاری ایمنی توسط استانداردهای بین المللی. و همچنین قوانین مربوط به کاهش آلایندگی اتومبیل، نیاز به افزایش کارایی این صنعت. از طریق استفاده از مواد سبکتر در ساخت اتومبیل را باعث گردید. به منظور اجرای این قوانین و استانداردها، صنایع خودروسازی به استفاده از فولادهای پر استحکام پیشرفته، روی آورده اند. این ورقهای فولادی ضمن کار با قالب های شکل دهی ورق، اثرات سایشی بیشتری نسبت به سایر ورق های فولادی مرسوم بروز می دهند.

این موضوع با افزایش زمان تعمیر و نگهداری قالب، محدودیت در حجم تولید محصول را باعث می شود. از این رو، یافتن رااهی برای کاهش میزان سایش در قالب های تولید بدنه خودرو. که از ورق های فولادی پر استحکام پیشرفته استفاده می شود. به دلیل کاهش زمان تعمیر و نگهداری و در نتیجه کاهش قیمت محصول، مورد توجه واقع گردید.

بطور کلی عوامل مؤثر در سایش را از جنبه های متفاوتی می توان بررسی نمود. بخشی از این عوامل مربوط به متالورژی ورق و قالب و خواص سطحی آنهاست که تأثیر مستقیمی بر خواص مکانیکی دارد. بخشی دیگر مربوط به پارامترهای کاری قالب های شکل دهی است.

 

تا کنون تحقیقات زیادی در مورد سایش لبه قالب ها ارائه گردید. عطاف و همکاران با مطالعه توزیع تنش روی لبه قالب نشان دادند که پروفیل تنش روی لبه قالب دو نقطه ماکزیمم دارد. مکان نقطه ماکزیمم بزرگتر در ورودی و دیگری با توجه به زاویه خمش ورق روی لبه قالب، در ادامه شعاع قالب اتفاق می افتد. پریرا و همکاران به بررسی دقت پروفیل لبه قالب پرداختند و نشان دادند. که افزایش تلرانس لبه قالب بین از حد قابل قبول 15 میکرومتر، موجب افزایش تنش های وارده به لبه قالب می شود.

 

ونگ و همکاران اثر نیروی ورق گیر و ضرب اصطکاک در توزیع تنش روی لبه های قالب را بررسی نمودند. کر خورن و همکاران به مطالعه اثر ریزساختار فولاد قالب روی اصطکاک قالب با ورق که عاملی تأثیرگذار روی سایش قالب است، پرداختند. فلوکسی و وولرتسن به بررسی سایش در قالب های کشش عمیق در ابعاد میکرو پرداختند. سینگ و همکاران، اثر سرعت فرآیند شکل دهی و اثر روانکار را بر سایش لبه قالب در فورج داغ ارزیابی کردند. همچنین، ونگ و مسعود به بررسی اثر پروفیل منحنی لبه قالب روی توزیع تنش در لبه قالب پرداختند.

 

اگرچه پارامترهای مؤثر بر توزیع تنش روی لبه قالب. به عنوان عامل اصلی در سایش قالب های شکل دهی ورق، به طور گسترده مورد تحقیق قرار گرفتند. اما مطالعه ای در مورد اثر متالورژی ورق در تماس با قالب. به عنوان ماده ای که اثر تنش روی آن نیز بر سایش قالب مؤثرا است. گزارش نشده است. در موارد مشابه، اوکن به بررسی اثر گالینگ در سایش آلیاژهای پایه نیکل و پایه کبالت با استفاده از روش پین روی صفحه پرداخت. بانسالی و میلر، اثر انرژی عیوب لایه ای را بر روی سایش گالینگ فلزات پایه کبالت با روش پین روی بلوک بررسی کردند.

 

وانگ و همکاران اثر پوشش دهی به روش های نیتریده کردن سطح و نفوذ حرارتی کاربید به سطح. در مقاومت به گالینگ ابزار شکل دهی را زمانی که با ورق پر استحکام پیشرفته در تماس باشد، مطالعه کردند. پودگورنیک و همکاران خواص ضد گالینگ نیترید بور هگزاگونال را در شکل دهی آلیاژهای آلومینیوم مطالعه کردند. بهاتاچاریا و همکاران اثر گالینگ ورق های پراستحکام پیشرفته را روی قالب های تریم (برش اضافه کار) مورد مطالعه قرار دادند. کورا و همکاران، سایش قالب را با پوشش های سطحی مختلف، ضمن کار با ورق های فولادی پر استحکام پیشرفته ارزیابی کردند. کورا و کوک ویژگی های سایشی جنس های قالب مورد استفاده برای شکل دهی ورق های فولادی پر استحکام پیشرفته را مورد بررسی قرار دادند.

 

با بررسی پیشینه پژوهش مشخص گردید که تا کنون اثر انرژی عیوب لایه ای و سایش گالینگ در ورق های فولادی پر استحکام پیشرفته. بعنوان ماده خام مورد استفاده در صنایع خودروسازی برای تولید قطعات بدنه خودرو، گزارش نشده است. در این تحقیق تلاش شده است. تا ضمن معرفی استاندارد G98 انجمن تست و مواد آمریکا برای مقایسه مقاومت به گالینگ در بین مواد مختلف. مقاومت به گالینگ بین دو نوع ورق کشش عمیق یا مقداری انرژی عیوب لایه ای متفاوت. در مقابل آلیاژ GGG60 بر اساس استاندارد 1693 مؤسسه استاندارد آلمان که یک آلیاژ پر کاربرد در ساخت قالب های شکل دهی است، بررسی شود.

 

همچنین سعی شده است تا با استفاده از نرم افزارهای تخصصی شکل دهی و مدل کردن قالب مورد نظر. اثر پارامترهای کاری قالب شکل دهی بر روی سایش بدست آید. نتایج حاصل از این تحقیق برای انتخاب ماده اولیه به منظور ساخت قالب های شکل دهی. و انتخاب ورق اولیه و تعیین پارامترهای کاری شکل دهی توسط صنایع خودروسازی مفید خواهد بود. تحقیقات آینده می تواند در زمینه یافتن بازه قابل قبول درصد عناصر محلول در ورق های فولادی پر استحکام پیشرفته. به منظور بروز کمترین احتمال رخداد در گالینگ، متمرکز شود.

2-مکانیزم سایش گالینگ

براساس استاندارد G40 انجمن تست و مواد آمریکا، گالینگ گونه ای از آسیب سطحی است. که بین سطوحی که روی یکدیگر می لغزند، ایجاد می شود. و با مشاهده میکروسکوپی زبرشدگی و نقاط آمادگی محلی روی سطح اصلی، قابل تشخیص است. با لغزش سطوح فلزی روی یکدیگر، در اثر پدیده مکث و لغزش مقداری از سطح یک فلز به دیگری منتقل می شود. با ادامه فرآیند و انتقال ماده بیشتر و روی هم انباشته شدن این رسوبات فلزی روی یکدیگر. به تدریج توده سخت و فشرده ای تشکیل می شود. که می تواند استحکام تا 1500 مگاپاسکال داشته باشند. این ذرات ضمن جدا شدن از سطح آشیانه خود و حرکت بین سطوح، موجب خراش های جدی روی سطوح فلزی (قالب و ورق) می شوند.

1-2- انرژی عیوب لایه ای و رابطه آن با سایش گالینگ

به طور کلی هر عاملی که باعث تسهیل لغزش صفحات کریستالی روی یکدیگر شود، به سایش گالینگ کمک می کند. مقاومت یک ماده در مقابل گالینگ، معمولاً با فاکتور انرژی عیوب لایه ای بیان می شود. مواد دارای عیوب لایه ای بالا مستعد گالینگ هستند. بانسالی و میلر نشان دادند که کاهش انرژی عیوب لایه ای به کاهش تمایل فلز به گالینگ منجر می شود. جدول 1، میزان انرژی عیوب لایه ای برای عناصر مختلف را نشان می دهد.

 

انرژی عیوب لایه ای برای عناصر مختلف و آلیاژهای گوناگون، متناسب با درصد وزنی آنها متفاوت است. بنابراین برای هر آلیاژ با توجه به عناصر محلول در آن باید از فرمول محاسبه معینی استفاده کرد. در مقایسه اولیه بین ورق های فولادی عاری از عناصر بین نشین (یا IF) و ورق های AHSS. حتی با مساوی بودن میزان انرژی عیوب لایه ای، به دلیل بالا بودن درصد کربن. و کاهش یافتن چسبندگی لایه های کریستالی در ورق های AHSS، می توان پیش بینی کرد. که این ورق ها، استعداد بیشتری به لغزش لایه های کریستالی روی یکدیگر دارند.

در نتیجه مقاومت به گالینگ کمتری در مقایسه با نمونه های فولادی IF مرسوم دارند. از آنجا که برای بالا نگه داشتن استحکام ورق نمی توان درصد کربن محلول را کاهش داد. باید میزان انرژی عیوب لایه ای ورق های AHSS در حد بهینه کنترل شود.

2-2- آزمون G98 برای مقایسه به گالینگ

استاندارد G98 انجمن تست و مواد آمریکا برای مقایسه مقاومت به گالینگ مواد مختلف، چیدمانی مشابه شکل 1 پیشنهاد می دهد. مطابق این شکل، یکی از دو نمونه به صورت پین و دیگری به صورت بلوک بطور عمود در تماس با هم قرار می گیرند. پس از وارد کردن نیروی فشاری معین بر مجموعه پین و بلوک. پین یا بلوک (معمولاً پین) در شرایط خشک و بدون حضور روانکار. یک دور کامل در مقابل دیگری گردش می کند. زمان چرخش پین در مقابل بلوک باید بین 3 تا 20 ثانیه باشد. تمامی ابعاد پین و بلوک به جز قطر و تلرانس ابعادی قطر پین در اختیار کاربر قرار دارد. سایر الزامات مورد نیاز برای اجرای آزمایش در جدول 2 ارائه و معلوم و مشخص است.

 

قبل از اجرای هر آزمایش و برای زدودگی چربی ها، ضروری است که پین با مایع تری کلرواتان شستشوی شود. همچنین بر طبق استاندارد می توان از هر وسیله مکانیکی یا هیدرولیکی. که نیروی مورد نظر را بطور ثابت در طول آزمایش اعمال نماید، استفاده کرد.

3- مقایسه مقاومت به گالینگ ورق فولادی IF با ورق AHSS

به منظور صحه گذاری بر پیش بینی که انجام شد. در بخش قبل مبنی بر کمتر بودن مقاومت به گالینگ ورق های AHSS نسبت به ورق های فولادی IF، با استفاده از چیدمان توصیه شده. توسط استاندارد G98، به مقایسه مقاومت به گالینگ یک نمونه ورق فولادی IF. با یک نمونه ورق AHSS مورد استفاده در تولید بدنه خودروی پژو405 گروه صنعتی ایران خودرو بررسی گردید.

شرایط موجود در اجرای آزمایش، در جدول ای 2 و 3 ارائه شده است. مقایسه شرایط موجود در حین اجرای آزمایش و شرایط استاندارد، مطلوب بودن شرایط اجرای آزمایش را به خوبی نشان می دهد.

 

در این آزمایش از ورق DC04 بر اساس استاندارد انگلیسی 10130 به عنوان نمونه AHSS به کاری گیری شد. که مقدار ضخامت، سختی و زبری سطح هر نمونه در جدول 4. و همچنین آنالیز عناصر موجود در دو نوع ورق با سطح اطمینان 95% در جدول 5 ارائه و معلوم و مشخص است. ساختار زمینه هر کدام از نمونه ها بعد از اچ کردن با بزرگنمایی 100 و 200 برابر در شکل 2 نمایان و مشخص می باشد. متالوگرافی سطح هر دو نمونه نشان می دهد ساختار زمینه هر دو نمونه، فریتی می باشد.

 

برای اعمال نیروی عمودی کنترلی و ثابت در طول اجرای آزمایش از یک دستگاه فرز دکل ساخت ماشین سازی تبریز به کاری گیری می شود. از مزایای استفاده از این دستگاه نگه داشتن مجموعه اعمال نیرو در کلگی دستگاه فرز است. که عمود بودن نیروی وارده بر پین و ورق در طول آزمایش را تضمین می کند.

بررسی سایش گالینگ

بررسی سایش گالینگ
بررسی سایش گالینگ

بررسی سایش گالینگ

بررسی سایش گالینگ

 

شکل 3، چیدمان آزمایش شامل نیروسنج به همراه نمایشگر تولیدی. برای اطمینان از مقدار و ثابت بودن نیروی اعمالی در طول آزمون، نشیمنگاه ورق، و همچنین پین تولیدی. همراه نگهدارنده آن بر روی کلگی دستگاه را نشان می دهد. بنابراین پیشنهاد استاندارد، نیروی اعمالی از 90 کیلوگرم آغاز می شود و با دوره های 10 کیلوگرم افزایش پیدا می کند. قبل از هر بار آزمایش، سطح پین برای تأمین صافی مورد نیاز سنگ زنی و با مایع تری کلرواتان شستشوی می شود. اندازه نیروی اعمالی تا پیدایش آثار گالینگ در هر دو نمونه ورق فولادی تا نیروی 180 کیلوگرم ادامه پیدا کرده است.

 

 

با توجه به افزایش باند سایش و افزایش میزان پارگی و شخم خوردگی سطح سایش یافت. آستانه پیدایش گالینگ در دو نمونه ورق تعیین گردید. ورق IF در 180 کیلوگرم یا 13/94 مگاپاسکال آثار گالینگ را از خود به نمایش گذاشت. در حالی که ورق AHSS در 130 کیلوگرم یا 10/07 مگاپاسکال آثار گالینگ را از خود نشان داده است.

با مقایسه تنش ایجاد گالینگ در دو نمونه می توان نتیجه گرفت ورق AHSS نسبت به ورق IF مورد آزمایش. استعداد بیشتری برای رخداد گالینگ دارد. بنابراین، می توان سایش قالب های شکل دهی ورق در مرحله فرمینگ، را به این موضوع نسبت داد. تماس ورق و قالب در این مرحله، بر اساس فرآیند مکث و لغزش، با اصطکاک بالا ضمن حرکت سطوح روی یکدیگر همراه است. هرچه استعداد گالینگ ورق بیشتر باشد، احتمال جدا شدن ذراتی از سطح ورق و تحمیل سایش به قالب، بیشتر می شود.

4-بررسی نرم افزاری قالب شکل دهی

پس از مطالعه گالینگ و به منظور بررسی اثر پارامترهای کاری قالب شکل دهی لازم است. تا با استفاده از نرم افزارهای المان محدود، میزان تنش و احتمال پارگی در قالب شکل دهی ارزیابی گردد. این بررسی در پاسخ به این پرسش که “آیا تنش به وجود آمده. در سطح قالب به میزان بحرانی برای پارگی ورق یا سایش قالب می رسد؟، کاربرد دارد.

در این مطالعه، قالب مورد نظر، قالب تولید درب خودروی پژو 405، با استفاده از نرم افزار کتیا مدل سازی گردید. و فرآیند شکل دهی با استفاه از نرم افزار اتوفرم شبیه سازی گشت. تمامی جزئیات اجزای قالب شامل سنبه، ماتریس، ورق گیر، بیدهای مورد بکارگیری. که به منظور کنترل سرعت کشیده شدن و تنش اعمالی روی ورق بصورت نری و مادگی بر روی ماتریس و ورق گیر قرار می گیرند. و همچنین بلوک های فاصله انداز که جهت کنترل کورس حرکتی ورق گیر و کنترل موضعی جریان و تنش. در نقاط مختلف قالب مورد استفاده قرار می گیرند. مد نظر قرار گرفت. و در شکل 5، اجزای مورد مدل سازی قالب نمایان می شود.

 

در این شبیه سازی، کورس حرکتی ماتریس و ورق گیر به ترتیب برابر با 1050 و 170 میلی متر و در جهت پایین می باشد. سنبه در این فرآیند ثابت است. همچنین کل زمان فرایند بر اساس تنظیمات موجود در کارخانه 4 ثانیه در مد نظر قرار گرفت. که 2 ثانیه آن مربوط به حرکت ماتریس از شروع حرکت تا درگیری ورق گیر و 2 ثانیه دیگر آن. مربوط به حرکت هم زمان ماتریس و ورق گیر و انجام عملیات کشش می باشد. به این ترتیب، سرعت حرکت ماتریس قبل از درگیری با ورق گیر برابر با 440 میلی متر بر ثانیه. و سرعت حرکت همزمان ماتریس و ورق گیر برابر با 85 میلی متر بر ثانیه می باشد.

 

روان کار مورد استفاده بصورت ثابت بر روی سطوح سنبه و ماتریس. و بصورت استاندارد کشش عمیق بگونه ای تعیین گردید تا ضریب اصطکاک برابر با 0/15 شود. البته در واقعیت، این مقدار با توجه به فشار پرس متغیر بوده. و برای نزدیکی بیشتر به واقعیت و بر اساس میزان فشار اعمالی در نقاط مختلف قالب. نرم افزار تغییرات لازم را به صورت خودکار انجام می دهد. با توجه به تنظیمات موجود در کارخانه، مقدار نیروی ورق گیر برابر با 70 تن نیرو قراری گیری شد. هرچند که متغییر کردن آن بر اساس زمان و کورس حرکتی تغییراتی را به همراه خواهد داشت. که موجب کنترل بیشتر روی چین خوردگی ها و پارگی ها خواهد شد.

1-4- نتایج حاصل از بررسی نرم افزاری

شکل6، تحلیل المان محدود نرم افزار در مورد تنش های عمودی اعمالی در فرایند شکل دهی را نمایش می دهد. این بررسی نشان می دهد مقدار تنش در مناطق تمرکز تنش، یعنی در لبه ها به بیش از 100 مگاپاسکال می رسد. مطابق شکل 6، لبه بالا سمت راست تودری (منظور قطعه تولیدی قالب است)، منطقه خطرناک از لحاظ توزیع تنش با مقادیر بالای 100 مگاپاسکال است.

بررسی سایش گالینگ

از این رو هنگام کار قالب با ورق پر استحکام پیشرفته انتظار می رفت تا علائم سایش و خرابی. در این بخش زودتر از سایر بخش های قالب، بروز پیدا کند. مطابق شکل 7، اثرات سایشی استفاده از ورق AHSS روی قالب در بخش مورد انتظار به مقدار بیشتر و وسیع تر ایجاد شد. که بدین ترتیب انتظارات حاصل از بررسی نرم افزاری، تطبیق خوبی با واقعیت نشان داد. به عبارت دیگر، مناطق پر تنش در بررسی نرم افزاری، دقیقاً همان مناطقی هستند که در قالب و بصورت واقعی دچار سایش شدید گردیدند.

بررسی سایش گالینگ

5-نتیجه گیری

همانطور که عنوان شد عوامل بسیار متعددی در سایش قالب های شکل دهی مؤثر هستند. از یک طرف مباحث مربوط به متالورژی ورق و مقاومت ورق در برابر گالینگ و همچنین ویژگی های اصطکاکی مطرح هستند. و از طرفی دیگر مسائل مربوط به پارامترهای شکل دهی اهمیت دارند.

بررسی سایش گالینگ

در تحقیقی که انجام پذیرفت مباحث مربوط به متالورژی ورق در راستای استعداد به گالینگ ورق های فولادی. بعنوان مکانیزم اصلی سایش در این قالب ها. مورد استفاده در صنایع خودروسازی مطرح و نمایان و مشخص شد. که با تغییر در ترکیب شیمیایی ورق مورد استفاده می توان در جلوگیری از وقوع گالینگ تأثیر گذاشت. در ادامه و با اجرای آزمایش استاندارد G98، همین مسأله در بین دو نوع ورق مورد استفاده در صنایع خودروسازی، مورد مطالعه قرار گرفت. و نمایان و مشخص شد.

 

که یکی از علل سایش بیشتر قالب حین استفاده از ورق AHSS، استعداد به گالینگ بیشتر این ورق نسبت به ورق IF است. همچنین از آنجا که مکانیزم سایش در ارتباط مستقیم با اصطکاک بین ورق و قالب می باشد. تمامی مباحث تأثیرگذار در مقدار اصطکاک از جمله جهت نورد ورق مورد استفاده، روانکار و پوشش سطحی قالب در میزان سایش مؤثر است. هرچند که سخت کاری قالب و پوشش دهی سطحی آن. همانند رسوب بخار شیمیایی و رسوب بخار فیزیکی ترکیبات تیتانیم و کروم در تحمل تنش های وارده به آن نیز اثر گذر است.

 

از جنبه ای دیگر و با بررسی نرم افزاری قالب شکل دهی نشان داده شد. که طی فرایند کشش عمیق، با افزایش تنش های نرمال و برش وارده بر ورق، احتمال بروز سایش گالینگ بیشتر می شود. این مسأله، به خوبی خود را در لبه های قالب که تحت بیشترین تنش هستند، نشان داد. مقایسه تنش نرمال بدست آمده در تست G98 و تنش پیش بینی شده توسط نرم افزار المان محدود. و مطابقت خوب آنها با یکدیگر، صحت شبیه سازی را صحه گذاری نمود. بنابراین می توان با تغییر در پارامترهای کاری شکل دهی از جمله تناژ دستگاه. محل و اندازه بیدها و بلوک های فاصله انداز به کار رفته. و سرعت حرکت اجزای قالب حین اجرای فرایند، تا حدود زیادی از سایش قالب جلوگیری کرد.

 

حمیدرضا بدخشیان، محمد سروش مرکانی، بیژن ملایی داریانی، علی پرویزی

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: بررسی سایش گالینگ روی قالب های تولیدی ضربه ای ,



بازدید : 202
نویسنده : جواد دلاکان

فولاد ساختمانی یک اصطلاح کلی برای مواد فولاد است. که برای ساخت مصالح ساختمانی در اشکال مختلف مورد استفاده قرار می گیرد.

فولاد ساختمانی - پروفیل فولادی - مقاطع فولادی - فوولاد آلیاژی - فولاد ساختمانی استاندارد آمریکا

فولاد ساختمانی

بسیاری از پروفیل های فولادی به شکل یک تیر بلند است که مشخصات یک مقطع خاص را دارد. شکل پروفیل های فولادی، اندازه، ترکیب شیمیایی، مشخصات مکانیکی مانند مقاومت. شیوه های ذخیره سازی و غیره با استفاده از استاندارد ها در اکثر کشورهای صنعتی تنظیم می شود.

اکثر پروفیل های فولادی مانند تیرهای با مقطع I، گشتاور دوم سطح بالایی دارند. به این معنی که از نظر سطح مقطع بسیار قوی هستند. و در نتیجه می توانند میزان بار زیادی را بدون تغییر شکل در خور اهمیت تحمل کنند.

فولاد ساختمانی استاندارد آمریکا

فولادهای مورد استفاده در ساخت و ساز در ایالات متحده. از آلیاژهای استانداردی که توسط ASTM International شناسایی و مشخص شده اند، استفاده می کنند. این فولادها دارای یک شناسایی آلیاژ هستند که با A. و سپس دو، سه یا چهار عدد پس از آن شروع می شود. درجات چهار عددی AISI فولاد که معمولاً برای مهندسی مکانیک. ماشین آلات و وسایل نقلیه استفاده می شود یک سری مشخصات کاملاً متفاوت است.

فولاد های ساختمانی استاندارد که معمولاً مورد استفاده قرار می گیرند عبارتند از:

فولادهای کربنی

  • A36 – پروفیل ها و ورق ساختمانی.
  • A53 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A500 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A501- لوله ها و پروفیل های لوله ای ساختمانی.
  • A529 – پروفیل ها و ورق ساختمانی.
  • A1085 – لوله ها و پروفیل های لوله ای ساختمانی.

فولادهای کم آلیاژ مقاوم بالا

  • A441 – پروفیل ها و ورق های ساختمانی -(جایگزین توسط A572).
  • A572 – پروفیل ها و ورق های ساختمانی.
  • A618 – لوله ها و پروفیل های لوله ای ساختمانی.
  • A992 – کاربردهای ممکن تیرهای مقاطع بال پهن W یا I هستند.
  • A913 – پروفیل های آبدیده بال پهن W

Quenched and Self Tempered (QST) W shapes

  • A270 – پروفیل ها و ورق های ساختمانی

فولادهای مقاوم دربرابر خوردگی با آلیاژ کم و مقاموت بالا

  • A243 – پروفیل ها و ورق های ساختمانی.
  • A533 – پروفیل ها و ورق های ساختمانی.

فولاد های آلیاژی آب دیده

  • A514 – پروفیل ها و ورق های ساختمانی.
  • A517 – دیگ های بخار و مخازن تحت فشار.
  • فولاد اگلین – اقلام ارزان قیمت هوافضا و تسلیحات.

فولاد آهنگری شده

  • A668 – فولاد آهنگری

فولاد ساختمانی

  • خصوصیات – مقاومت فشاری و همچنین مقاومت کششی فولاد ساختمانی با مقاومت های نسبت داده شده به بتن متفاوت است.
  • مقاومت – با دارا بودن مقاومت بالا، سختی، سفتی و خاصیت انعطاف پذیری. فولاد یکی از متداول ترین مصالح در ساخت و ساز ساختمان های تجاری و صنعتی است.
  • قابلیت ساخت- فولاد تقریباً به هر شکلی قابل ساخت است. که با اتصالات پیچی یا جوشی در ساخت و ساز قابل استفاده است. به محض تحویل مصالح در کارگاه ساختمانی، می توان سازه فولادی را نصب کرد. در حالی که بتن، حداقل 1-2 هفته پس از ریختن و قبل از ادامه عملیات اجرایی. باید به عمل آورده شود، و این باعث می شود. که فولاد بعنوان مصالح سازه ای سازگار با برنامه عملیات اجرایی باشد.
  • مقاومت در برابر آتش – فولاد ذاتاً ماده ای غیر قابل اشتعال در برابر آتش است. ولی به هر حال، هنگامی که تا درجه حرارت هایی. مانند گرمایی که در جریان یک حادثۀ آتش سوزی ایجاد می شود، گرم می شود. مقاومت و سختی آن به میزان قابل توجهی کاهش می یابد. قوانین بین المللی ساختمان، پوشش دادن کافی فولاد را در مواد ضد حریق الزامی می دانند. که این باعث افزایش هزینه کلی ساختمانهای با اسکلت فلزی می شود.

 

  • خوردگی – فولاد در هنگام تماس با آب. می تواند دچار خوردگی شود و یک سازه بالقوه خطرناک را ایجاد می کند. برای جلوگیری از هرگونه خوردگی در طول عمر یک سازه فولادی. باید در ساخت سازه های فلزی اقدامات لازم صورت گیرد. فولاد را می توان رنگ کرد که مقاومت در برابر آب را فراهم می کند. همچنین، مواد مقاوم در برابر آتش که برای پوشاندن فولاد استفاده می شود معمولاً در برابر آب نیز مقاوم است.
  • کپک قارچی – فولاد نسبت به چوب سطح مناسب کمتری در محیط، برای رشد کپک قارچی را فراهم می کند.

بلندترین سازه ها امروزه (که معمولاً به آن “آسمان خراش ها” یا ساختمان مرتفع گفته میشود). به دلیل قابلیت خوب ساخت و همچنین نسبت بالای مقاومت به وزن فولاد. با استفاده از این مصالح ساخته می شوند. در مقایسه با بتن، اگرچه چگالی بتن از فولاد کمتر است. اما نسبت مقاومت به وزن بتن نیز بسیار کمتر است. به همین دلیل یک عضو سازه بتنی برای تحمل یک میزان معین بار به حجم بسیار بزرگی نیاز دارد.

 

فولاد گرچه متراکم تر است اما برای حمل بار به مواد زیادی احتیاج ندارد. اما، این مزیت برای ساختمان های کم ارتفاع، یا برای ساختمان های چند طبقه یا کمتر، اهمیت زیادی ندارد. بارهای ساختمان های کم ارتفاع نسبت به سازه های مرتفع بسیار کمتر است. و در نتیجه استفاده از بتن برای سازه اقتصادی است. این امر به ویژه در مورد سازه های ساده. مانند پارکینگ یا هر ساختمانی که دارای شکل ساده مستطیلی است، صادق است.

ترکیب فولاد و بتن مسلح

سازه هایی که از این دو ماده تشکیل شده اند. از مزایای فولاد و بتن مسلح هر دو بهره مند می شوند. این روش هم اکنون در بتن آرمه متداول است. که در آن از ظرفیت کششی میلگردهای تقویتی برای تأمین استحکام کششی در اعضای بتنی سازه استفاده می شود. نمونۀ بارز آن در پارکینگ های چند طبقه است. برخی از این پارکینگ ها با استفاده از ستون های فلزی و دال بتن مسطح ساخته می شوند. بتن برای شالوده ریخته می شود و سطحی برای ساخته شدن پارکینگ بر روی آن را به پارکینگ می دهد.

 

ستون های فولادی با پیچ و مهره یا جوشکاری آنها به میخ های فلزی. که بخشی از آن ها از سطح دال بتن ریزی شده بیرون گذاشته شده اند. به شالوده متصل می شوند. تیرهای بتنی پیش ساخته می تواند برای نصب در طبقه دوم، به کارگاه تحویل داده شوند. که پس از آن یک دال بتنی برای قسمت روسازی پارکینگ ریخته می شود. این روند می تواند در مورد چندین طبقه انجام شود. یک پارکینگ از این نوع فقط نمونه ای قابل اجرا از بسیاری از سازه هایی است. که می تواند از بتن مسلح و فولاد استفاده کننند.

مهندسی سازه از وجود طرح های بی شماری برای ایجاد ساختمانی کارآمد، ایمن و مقرون به صرفه آگاه است. این وظیفۀ آن مهندس است که در کنار مالکان، پیمانکاران و دیگر طرف های ذینفع در پروژه. برای رسیدن به یک نتیجۀ ایدئال متناسب با نیاز هر کدام از آنها، همکاری کند. مهندس، هنگام انتخاب مصالح سازه ای برای ساختمان، متغیرهای زیادی، از جمله هزینه. نسبت مقاومت/وزن، پایداری مصالح، قابلیت ساخت و غیره را در نظر می گیرد.

خواص حرارتی

خواص فولاد بسته به عناصر آلیاژی آن بسیار متفاوت است.

درجه حرارت آستنیت کننده، دمایی که در آن فولاد به ساختار بلوری آستنیت تبدیل می شود. برای فولاد از 900 درجه سانتی گراد (1650 درجه فارنهایت) در مورد آهن خالص شروع می شود. و با افزایش میزان کربن، دما به حداقل 724 درجه سانتی گراد (1335 درجه فارنهایت). برای فولاد یوتکتیک (فولاد حاوی 83% وزنی کربن تنها)، پایین می آید. با نزدیک شدن میزان کربن به 2.1 % (نسبت به جرم). درجه حرارت آستنیت کننده بالا می رود و به 1.130 درجه سلسیوس (2070 درجه فارنهایت) می رسد. به طور مشابه، نقطه ذوب فولاد بر اساس آلیاژ تغییر می کند.

 

کمترین دما که در آن یک فولاد کربنی ساده می تواند شروع به ذوب شدن کند. درجه حرارت جامد آن، 1130 درجه سانتی گراد (2070 درجه فارنهایت)، است. فولاد، زیر این درجه حرارت، هرگز به مایع تبدیل نمی شود. آهن خالص (فولاد به صفر درصد کربن) با شروع به ذوب شدن 1492 درجه سانتی گراد (2718 درجه فارنهایت). و با رسیدن به 1539 درجه سانتیگراد (2802 درجه فارنهایت) کاملاً مایع است فولاد با 2.1 % کربن وزن. شروع به ذوب شدن در 1130 درجه سانتیگراد (2070 درجه فارنهایت). و با رسیدن به 1315 درجه سانتی گراد (2399 درجه فارنهایت)، کاملاً ذوب می شود. فولاد با بیش از 2.1% کربن دیگر فولاد نیست. اما به عنوان چدن شناخته می شود.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶


:: برچسب‌ها: فولاد ساختمانی , پروفیل فولادی , مقاطع فولادی , فولاد آلیاژی , فولاد ساختمانی استاندارد آمریکا ,



بازدید : 201
نویسنده : جواد دلاکان

بررسی مودهای شکست لرزه ای و راهکارهای مقاوم سازی مخازن استوانه ای فولادی مهارنشده در یک مجتمع نفتی

بررسی مودهای شکست لرزه ای و راهکارهای مقاوم سازی مخازن استوانه ای فولادی

بررسی مودهای شکست

چکیده

مخازن استوانه ای فولادی رو زمینی به طور وسیع در مجتمع های نفتی و از جمله انبارهای نفت ایران به کار گیری می شوند. تجربه زلزله های گذشته در کشورهای مختلف نظیر ژاپن، ایالات متحده، ترکیه و غیره نشان می دهد. که این گونه مخازن در مقابل حرکات نیرومند زمین در زلزله بسیار آسیب پذیر بوده. و مطالعات آسیب پذیری و مقاوم سازی آنها از اهمیت زیادی برخوردار است. در این مقاله رفتار لرزه ای 5 مخزن فولادی رو زمینی مهار نشده. در یک مجتمع نفتی با نسبت های ارتفاع به قطر (H/D) مختلف مورد مطالعه قرار گرفتند.

 

و انواع مودهای آسیب شامل کمانش پافیلی، کمانش الماسی. آسیب دیدگی سقف در اثر نوسان سیال، لغزش، واژگونی، بلندشدگی کف و نشست نامتقارن با تحلیل غیر خطی بررسی گردید. در این مطالعات، علاوه بر ارزیابی ضوابط آیین نامه های معتبر از جمله API650 و ASCE. تحلیل های استاتیکی، مودال، طیفی (خطی) و تاریخچه زمانی (غیر خطی) نیز بکارگیری شد. نتایج مطالعات موردی نشان می دهد که با در نظرگیری ارتفاع آزاد سیال داخل مخازن (free Board). برابر 13 درصد ارتفاع آنها، خطر آسیب دیدگی سقف از بین می رود. همچنین مخازن با نسبت ارتفاع به قطر بزرگتر و یا مساوی با یک (≤H/D) ناپایدار می باشند. سایر مودهای آسیب مذکور در مورد مخازن مورد مطالعه حاکم نمی باشند.

 

مقدمه یکی از انواع سازه های مهم که کاربرد فراوانی در پالایشگاه های نفتی دارد. مخازن فولادی رو زمینی نفتی هستند. که به شکل استوانه ای طراحی و اجرا می گردند. در واقع مخزن را وقتی رو میزی گویند که کف آن متکی بر بستر خاک یا پی باشد. یک مخزن فولادی از سه جزء اصلی تشکیل یافته است. بدنه، کف و سقف. کف مخزن ورق تختی می باشد که متکی بر بستر متراکم و یا شالوده گسترده بوده. و سقف آن نیز بسته به نوع ماده ذخیره شده به صورت ثابت و یا متحرک ساخته می شود.

بررسی مودهای شکست

مخازن رو زمینی نسبت به شرایط تکیه گاهی، به دو گروه تقسیم می شوند. مهار شده و مهار نشده. در یک مخزن مهار شده از حرکت قائم نسبی جداره در سطح پی جلوگیری شده است. در حالیکه یک مخزن مهار نشده در اثر تکان های شدید می تواند از روی زمین یا پی بلند شود. و بنابراین برای تحلیل دقیق دینامیکی آن آنالیز غیر خطی لازم است.

 

رفتار دینامیکی مخازن اولین بار توسط هاوزنر مدل سازی شد. و مبنای طرای آیین نامه ها قرار گرفت. وی چنین عنوان کرد که در یک مخزن دارای سطح آزاد که در معرض شتاب دینامیکی افقی قرار دارد. سیال از دو طریق بر روی جداره اثر می گذارد. 1) فشار نوسانی 2) فشار ضربانی. فشار نوسانی در اثرحرکت سیال مواج در بالای مخزن پدید می آید. و فشار ضربانی در اثر حرکت قسمتی از سیال در پایین مخزن و هماهنگ با پوسته ایجاد می گردد. فرکانس حرکت نوسانی به میزان قابل توجهی پایین تر از فرکانس حرکت ضربانی است. بدین معنی که این مود در پریودهای بالای زلزله تحریک می گردد.

 

در سال 2003 میلادی علی الزینی استاد و محقق دانشگاه کالیفرنیا. مقاله ای تحت عنوان ((بررسی پارامترهای مؤثر در پاسخ لرزه ای غیر خطی مخازن مهار نشده)) ارائه کرد. وی در این تحقیق اثراث فشار هیدرودینامیکی سیال را بر روی جداره مخازن مهار نشده در طول ارتعاشات ناشی از زلزله مورد بررسی قرار داد. و همچنین نتیجه گرفت که احداث مخازن بر روی فوندانسیون های انعطاف پذیر مناسب تر از اجرای آنها بر روی فوندانسیون های صلب می باشد. زیرا نرمی فوندانسیون سبب طولانی شدن پریود ارتعاشی مخازن در برابر نیروهای هیدرودینامیکی می گردد.

 

در سال 2004 میلادی نیز مارتین کولر به همراه پراوین مالهوترا مقاله ای تحت عنوان ((ارزیابی لرز های مخازن مهار نشده)) ارائه نمودند. که درآن هفت مخزن با نسبت های ارتفاع به شعاع مختلف (H/R) تحت بررسی قرار گرفت. آنها چنین عنوان کردند که یک ارتباط تنگاتنگ بین نسبت (H/R) و بلندشدگی کف مخازن وجود دارد.

مطالعات آسیب پذیری لرز ه ای مخازن فولادی موجود در یک مجتمع پالایشگاهی در سال 2006 نشان داد. که حدود 40 درصد مخازن موجود بسیار آسیب پذیر بوده و نیازمند مقاوم سازی اساسی هستند.

 

در این تحقیق، 5 مخزن موجود در یک مجتمع پالایشگاهی با نسبت های ارتفاع به قطر مختلف مورد ارزیابی قرار گرفت. علاوه بر کنترل ضوابط آیین نامه ای تحلیل های استاتیکی، مودال، طیفی و تاریخچه زمانی غیر خطی برای هریک از مخازن صورت پذیرفت.

مودهای آسیب مخازن

آسیب های وارده به مخازن را می توان در قالب هفت معیار آسیب پذیری بیان نمود. که به صورت مختصر عبارتند از:

واژگونی

وقتی نسبت ارتفاع به قطر زیاد می شود. پایداری مخزن در برابر این آسیب دیدگی کاهش می یابد. علت این پدیده بالا رفتن ارتفاع مرکز ثقل مخزن می باشد. این معیار با استفاده از ضوابط آیین نامه API650 و بر اساس نسبت M[D2(WL+Wt)] کنترل می گردد. در این رابطه M لنگر واژگونی مخزن بر حسب (N/m) و WL وزن محتویات مخزن. و در واحد طول محیط (N/m) و Wt وزن ورق جداره در واحد طول محیط مخزن بر حسب (N/m) می باشند. در صورتی که این نسبت بیشتر از 1/57 باشد مخزن ناپایدار بوده و واژگون خواهد شد.

 

کمانش الماسی جداره

تنش های فشاری که ایجاد شد در جداره مخازن سبب بروز کمانش در قسمت های میانی آن می گردد. که کمانش الماسی (کمانش الاستیک) نام دارد. مخازن با ارتفاع زیاد معمولاً دچار چنین آسیبی می شوند. این آسیب با محدود کردن تنش فشاری ایجاد شده. در جداره مخزن و مقایسه آن با تنش مجاز جداره مطابق با ضوابط آیین نامه api650 کنترل می گردد.

کمانش پافیلی جداره

کمانش پافیلی (کمانشی الاستوپلاستیک) معمولاً در مخازن بزرگ و در ارتفاع 1/5 تا 2/5 متری از کف مخزن رخ می دهد. علت ایجاد چنین کمانشی آن است که در هنگام بلند شدن قسمتی از کف مخزن تحت اثر نیروهای جانبی زلزله. در طرف مقابل آن تنش فشاری قائم به شدت جلوگیری از افزایش می یابد. در این حالت ترکیب دو تنش کششی حلقوی و فشاری قائم باعث ایجاد این کمانش در جداره می گردد. بدین ترتیب جلوگیری از افزایش بیش از حد تنش کششی حلقوی در جداره مخزن معیاری برای کنترل کمانش پافیلی محسوب می شود.

لغزش مخزن

نیروهای برشی ناشی از زلزله در تراز کف مخزن ممکن است بر نیروی اصطکاک غلبه کرده و باعث لغزش مخزن گردد. برای کنترل مخزن در برابر لغزش، برش پایه به عنوان نیروی محرک و نیروی اصطکاک کف مخزن با بستر. به عنوان نیروی مقاوم در نظرگیری می شود. بر اساس پیشنهاد دستورالعمل ASCE برای تأسیسات موجود، حداقل ضریب اطمینان لازم در مقابل لغزش برابر 1/5 می باشد. برای محاسبه نیروی مقاوم در برابر لغزش، ضریب اصطکاک بین کف مخزن و پی برابر 0/4 پیشنهاد گردید.

آسیب دیدگی سقف

نیروی ارتعاشی ناشی از زلزله باعث ارتعاش مخزن و سیال درون آن می گردد. ارتعاش سیال با فرکانش خیلی پایین تر از فرکانس جداره رخ می دهد. ارتعاش سیال متأثر از ارتعاش جداره نیست. بلکه عموماً به محتوای فرکانسی زلزله بستگی دارد. بنابراین، اگر پیش بینی های لازم صورت نگیرد. ممکن است پوشش سقف مخزن صدمه ببیند و یا محتویات درون آن به بیرون پاشش شود. عامل کنترل کننده در این حالت ارتفاع موج سیال می باشد.

بلند شدگی کف

بلند شدگی کف مخازن مهار نشده یکی از مودهای آسیب در زلزله های گذشته محسوب می شود. در صورتی که مقدار این بلند شدگی از مقدار مجاز آن (30 سانتیمتر) بیشتر شود. ممکن است منجر به پارگی جداره مخزن و یا شکستگی لوله های متصل به آن گردد.

نشست نامتقارن بستر

تنش های ناشی از لنگر واژگونی و ضربه های ناشی از بلند شدگی کف مخزن در هنگام زلزله. موجب نشست نامتقارن در تراز پایه می گردد. در نتیجه امکان آسیب دیدگی و خسارت مخزن وجود دارد. حداکثر نشست نامتقارن بستر طبق دستورالعمل های موجود به 5 سانتیمتر محدود گردید.

بررسی مودهای شکست

مدل سازی و تحلیل مخازن

مشخصات هندسی مخازن مورد بررسی به اختصار در جدول (1) بیان گردید و معلوم مشخص است. همچنین مدل سه بعدی یکی از مخازن به همراه چگونگی مش بندی آن در شکل (1) نمایان و مشخص است.

بررسی مودهای شکست

برای مدل سازی رفتار دقیق مخازن به هنگام تحریک زلزله، هم جداره فولادی. و هم سیال درون مخزن به کمک نرم افزار Ansys مدل سازی شده اند. برای مدل کردن جداره از المان Shell63 استفاده شده است. این المان یک المان خمشی – غشائی است. که قابلیت تحلیل نیروهای درون صفحه عمود بر صفحه را دارا می باشد. به علاوه، این المان قابلیت سخت شدگی کرنش و تغییر مکان های بزرگ را دارا می باشد.

بررسی مودهای شکست

برای مدل سازی سیال از المان Fluid80 استفاده شده است. این المان برای مدل کردن سیال بدون جریان مناسب است. و برای محاسبه فشار هیدرواستاتیک و اندرکنش سیال و سازه کاربرد دارد. همچنین برای مدل کردن بلند شدگی کف مخزن از المان Gap (Link10) استفاده شده است. این المان یک فتر فشاری است که سختی آن در هنگام کشش صفر می گردد.

تحلیل استاتیکی

به عنوان اولین گام در تحلیل کمی، مخازن تحت اثر وزن جداره و فشار هیدرواستاتیک سیال تحیلیل شده اند. نتایج این تحلیل بیانگر تنش های کششی حلقوی ایجاد شده در جداره مخزن تحت اثر فشار هیدرواستاتیک می باشد. همچنین، نتایج این تحلیل در ترکیبات بارگذاری مربوط به بارهای ثقلی و زلزله مورد استفاده قرار می گیرد.

بررسی مودهای شکست

تحلیل مودال

مشخصات ارتعاشی یک مخزن شامل فرکانس های طبیعی و شکل های مودی. از جمله پارامترهای مهم در تحلیل دینامیکی آن محسوب می شود. که با تحلیل مودال حاصل می شود. تعیین و بررسی این پارامترها می تواند در تفسیر رفتار دینامیکی مخزن مفید باشد. مودهای نوسانی و ضربانی از جمله مهمترین مودهای ارتعاشی محسوب می شوند که حداکثر جرم مؤثر را به خود اختصاص می دهند. و در تحلیل های دینامیکی حائز اهمیت هستند.

تحلیل طیفی

پس از انجام تحلیل مودال و تعیین مودهای اصلی مخزن تحلیل طیفی انجام پذیرفت. در این تحلیل برای ترکیب مودها از روش جذر مجموع مربعات (CQC) مورد کاربرد قرار گرفت. طیف طرح ویژه ساختگاه به صورت سه مؤلفه ای با نسبت های 100،30،30 استفاه شده است. نوع خاک محل تیپ III مطابق استاندارد 2800 زلزله ایران می باشد. مطابق دستورالعمل ASCE برای ارزیابی لرزه ای تأسیسات نفتی از طیف طرح ویژه ساختگاه. با احتمال گذر 10 درصد در 50 سال (دوره بازگشت 475 سال) استفاده گردیده که در شکل (2) ملاحظه می شود.

بررسی مودهای شکست

همچنین بر اساس ضمینه E آیین نامه API650 میرایی 2 درصد برای مود ضربانی و میرایی 0/5 درصد. برای مود نوسانی مخزن در نظر گرفته شده است.

تحلیل تاریخچه زمانی

با آنالیز تاریخچه زمانی میتوان علیه عوامل غیر خطی را در آنالیز وارد کرد. هدف از تحلیل دینامیکی حل معادلات حرکت حاکمه طبق رباطه (1) تحت اثر نیروهای زلزله می باشد.

بررسی مودهای شکست

این روابط به صورت غیر خطی تحلیل می شوند. و برای بر آورد میزان بلند شدگی کف مخزن و مقادیر دقیق پاسخ های سازه از این نوع تحلیل مورد کاربرد قرار گرفت.

 

میرایی سیستم دینامیکی به صورت میرایی رایلی در نظر گرفته شده است. که طبق رابطه (2) تابع خطی از جرم و سختی است.

که در آن [CFi] ماتریس میرایی المان i ام سیال ویسکوز و m تعداد المان های سیال می باشد. ضرایب a و β از رابطه (3) حاصل می شوند.

در رابطه فوق ωi و ωj فرکانس های دو مود اصلی مخزن و ξi و ξj میرایی مربوط به آنها می باشد. ضرایب a و β برای تحلیل تاریخچه زمانی بکار می رود.

در این مطالعات از رکوردهای زلزله های گلبافت، طبس و السنترو که بیشترین تطابق را با شرایط ساختگاه داشتند به کاری گیر گردید. این رکوردها به صورت سه مؤلفه ای در جهات متعامد با نسبت های 100،30،30 درصد به مخازن اعمال گردیده اند. نمودار تاریخچه زمانی شتاب زلزله طبس به عنوان نمونه در شکل (3) نمایان و مشخص است.

 

کنترل معیارهای آسیب پذیری مورد بررسی

با بهره گیری از نتایج تحلیل های دینامیکی غیر خطی هر یک از مخازن مورد نظر، معیارهای آسیب پذیری مربوطه کنترل گردیده است. که در ادامه بررسی می شوند.

کنترل واژگونی

به بهره گیری از ضوابط آیین نامه ASCE، نسبت M/[D2(wL+wt)] برای کلیه مخازن مورد نظر محاسبه گردیده. و نتایج آن در جدول (2) نمایان و مشخص است. همانطور که ملاحظه می شود فقط مخزن شماره 5 از نظر واژگونی مشکل دارد.

بررسی مودهای شکست

تغییرات میزان واژگونی مخازن بر حسب نسبت ارتفاع به قطر (H/D) در شکل (4) نمایان و مشخص است. همانطور که ملاحظه میشود تغییرات مربوطه غیر خطی است که با یک رابطه خطی تقریب زده شده است. روند تغییرات به گونه ای است که با افزایش نسبت (H/D) میزان واژگونی افزایش می یابد.

بررسی مودهای شکست

کنترل کمانش الاستیک الماسی در جداره

پس از محاسبه نسبت M/[D2(wL+wt)]. می توان حداکثر مقدار نیروی فشاری در واحد طول محیط جدارۀ مخزن (b) را بدست آورد. این نیرو با توجه به ضوابط آیین نامه API650 محاسبه گردید. و سپس تنش فشاری جداره مخزن (b/1000t) با تنش مجاز مربوطه مقایسه گردید. (t ضخامت ورق جداره به میلیمتر است). نتایج مورد حاصل از این محاسبات در جدول (3) نمایان و مشخص است. همچنین تغییرات تنش فشاری جداره بر حسب نسبت H/D در شکل (5) نمایان و مشخص است.

 

طبق ضوابط آیین نامه API650 کنترل کمانش الاستیک الماسی تنها در مورد مخازنی صورت می گیرد که پایدار بوده و مشکل واژگونی نداشته باشد. در واقع روابط موجود در این آیین نامه برای کنترل کمانش الماسی تنها در مورد مخازن پایدار معتبر می باشد. بنابراین کنترل این پارامتر در مورد مخزن شماره پنج امکان پذیر نیست.

کنترل کمانش الاستوپلاستیک پافیلی

برای کنترل این پدیده، تنش های کششی حلقوی در جداره مخازن تحت اثر آنالیزهای مختلف کنترل گردید. و نتایج مورد حاصل، در جدول (4) نمایان و مشخص است . نتایج مورد حاصل حاکی از آنست که مقدار این تنش در تحلیل طیفی بیشتر از مقادیر حاصله از سایر تحلیل ها می باشد. تغییرات این تنش ها بر حسب نسبت H/D در شکل (6) نمایان و مشخص است. طبق دستورالعمل ASCE ظرفیت مجاز تنشهای کششی در جداره مخازن برابر با Fa=1.6(0.6Fy) می باشد. که Fy تنش حد جاری شدن فولاد مصرفی است. و در مخازن مورد بررسی برابر با 2400 کیلوگرم بر سانتیمتر مربع می باشد. همانطور که ملاحظه می شود. مسأله کمانش پافیلی در مورد هیچ یک از مخازن مورد نظر مطرح نیست.

کنترل لغزش

به منظور کنترل لغزش مخازن، حداکثر برش پایه حاصله. برای هر مخزن به عنوان نیروی محرک (V) با استفاده از نتایج تحلیل طیفی و تاریخچه زمانی استخراج گردید. نیروی مقاوم در برابر لغزش توسط وزن سازه و اصطکاک بین کف و بستر مخزن به دست می آید. مطابق آیین نامه ASCE ضریب اطمینان در برابر لغزش مخازن بایستی 1/5 در نظر گیری شد. همچنین ضریب اصطکاک کف مخزن و بستر نیز برابر 0/4 در نظر گرفته شده است. بدین ترتیب برای کنترل لغزش مخازن رابطه (4) بررسی گردید.

بررسی مودهای شکست

0.4W≤1.5V

که در این رابطه W وزن مخزن و سیال درون آن می باشد. نتایج حاصل از کنترل لغزش مخازن مورد بررسی در جدول (5). و منحنی تغییرات میزان آن بر حسب نسبت H/D در شکل (7) ارائه شده است. همانطور که ملاحظه می شود مسأله لغزش در مخازن مورد نظر وجود ندارد.

 

کنترل نوسانات سیال (Sloshing) و آسیب سقف ارتعاش مخزن و سیال درون آن. در اثر لغزش های ناشی از زلزله سبب پایدار شدن امواجی در سطح سیال درون آن می شود. اگر پیش بینی های لازم در این مورد به عمل نیاید. این امواج سبب وارد آمدگی آسیب هایی به سقف مخازن می گردد. حداکثر ارتفاع امواج ایجادی در سطح سیال مخزن شماره دو به عنوان نمونه در شکل (8) نمایان و مشخص است. نتایج حاصل از دامنه نوسان سیال در مخازن مورد نظر حاصل از تحلیل های دینامیکی در جدول (6). و منحنی تغییرات آن در شکل (9) ارائه گردیده است.

 

همان طور که ملاحظه می شود. ارتفاع آزاد موجود (Free Board) در مخازن کافی نبوده و لذا آسیب پذیر هستند. یک راه حل برای جلوگیری از آسیب دیدگی سقف مخازن افزایش ارتفاع آزاد و راه حل دوم تقویت مخازن می باشد. بر اساس API650 ارتفاع آزاد مورد نیاز معادل 70 درصد ارتفاع موج می باشد.

بررسی مودهای شکست

کنترل بلندشدگی و نشست نامتقارن بستر

پدیده بلند شدگی و نشست نامتقارن مخازن یک پدیده غیرخطی هندسی می باشد. لذا برای بررسی میزان بلندشدگی کف و نشست ناشی از ضربه این بلندشدگی ها، آنالیز تاریخچه زمانی غیرخطی بر روی مخازن صورت پذیرفت. رکورد زلزله های طبق، گلبافت و السنترو که با شرایط ساختگاهی سازگاری بیشتری دارند، انتخاب شدند. پس از آنالیز تاریخچه زمانی، تغییر مکان قائم گره های کف مخزن تحت رکوردهای فوق بررسی و حداکثر مقادیر آنها استخراج گردید.

نتایج تحلیل در جدول (7) آمده است. همچنین نتایج نشست نامتقارن بستر در شکل (10) و نتایج بلندشدگی کف مخزن در شکل (11) نمایان و مشخص است. همانطور که ملاحظه می شود میزان بلند شدگی کف و همچنین میزان نشست بستر در تمام مخازن در محدوده مجاز قرار دارد. ولی با افزایش نسبت ارتفاع به قطر (H/D) این مقادیر افزایش می یابند.

 

راهکارهای مقاوم سازی

با توجه به محدودیت های موجود در شناخت میزان دقیق خطر لرزه ای یک ساختگاه برای طراحی یا مقاوم سازی. و کاستی های موجود در مدل سازی های تحلیلی نتایج قطعی قابل ارائه نمی باشد. بنابراین همواره پذیرش سطوحی از خطر اجتناب ناپذیر است. در نتیجه، افزودن حاشیه اطمینان و تأمین ضوابط طراحی و مقاوم سازی. و همچنین بررسی جزئیات با دقت بیشتر می تواند به عملکرد مطمئن و رفتار متناسب مخازن تحت زلزله های محتمل در آینده منجر شود. لذا هدف اصلی در یک پروژه طراحی و یا مقاوم سازی. کاهش خطر و حداقل نمودن آن با در نظر گرفتن امکانات و منابع موجود می باشد.

در تمام مخازن بررسی شده، سطح سیال درونی در وضعیت بحرانی قرار گرفته است. بدین ترتیب در ادامه راهکارهایی برای مقاوم سازی این مخازن ارائه گردیده است.

 

به منظور جلوگیری از آسیب های وارده به سقف در اثر پدیده نوسان سیال (Sloshing) که در تمام مخازن مورد بررسی به وجود می آید. کاهش ارتفاع سیال درون مخازن تا سطوح مورد بیان در جدول (6) کم هزینه ترین راه حل محسوب می شود. در این صورت لازم است میزان ارتفاع آزاد (Free Board) حداقل معادل 13 درصد ارتفاع کل هر مخزن در نظر گیری شود. در صورتی که به دلایل خاصی کاهش ارتفاع سیال امکان پذیر نباشد. لازم است با افزودن رینگ فولادی در بالای مخزن، تقویت کنج در مقابل ضربات ناشی از نیروی سال، مقاوم سازی لازم به عمل آید.

 

نتایج حاکی از آن است که مخزن شماره 5 با نسبت ارتفاع به قطر مساوی یک دچار واژگونی میشود و ناپایدار می باشد. در مورد این مخزن پس از بررسی راه حل های پیشنهادی آیین نامه API650. راه حل افزودن یک رینگ بتنی مسلح در پیرامون مخزن (زیر ورق پوسته) و مهار نمودن جداره مخزن. به این رینگ بتنی انتخاب شده است. نمایی از طرح پیشنهادی در شکل (12) نشان داده شده است. میل مهارهای لازم در فواصل مساوی طوری طراحی می شوند. که تحمل تنشها و نیروهای کششی ناشی از لنگر واژگونی را داشته باشند. باید توجه نمود که بر طبق ضوابط آیین نامه API650، فاصله میل مهارها نباید بیشتر از 3 متر در نظر گرفته شود. همچنین قطر مهارها نباید کمتر از 25 میلیمتر باشد.

بررسی مودهای شکست

تحلیل مجدد مخزن پس از مقاوم سازی نشان می دهد که تنش های کششی جداره برابر 12/34 مگاپاسکال می باشد. که کمتر از مقدار مجاز (43/58 مگاپاسکال) بوده و لذا قابل قبول می باشد.

نتیجه گیری

در این تحقیق 5 مخزن فولادی استوانه ای رو زمینی موجود در یک مجتمع نفتی مورد ارزیابی لرزه ای قرار گرفت. مخازن مورد بررسی در یک ناحیه لرزه خیر قرار دارند. که حداکثر شتاب زلزله طرح ساختگاه معادل 0.3g بر اساس استاندارد 2800 زلزله ایران می باشد. مهمترین یافت های حاصل از مطالعات تحلیلی و ارزیابی ضوابط آیین نامه ای به شرح زیر می باشند:

بررسی مودهای شکست

1- به منظور جلوگیری از پدیده واژگونی مخازن مهار نشده، بایستی نسبت ارتفاع به قطر (H/D) آنها از 0/7 کمتر باشد. این نسبت در آیین نامه های موجود به 0/6 محدود شده است.

2- با افزایش نسبت ارتفاع به قطر (H/D)، خطر کمانش الاستیک الماسی در جداره نیر افزایش می یابد.

 

3- با افزایش نسبت ارتفاع به قطر (H/D)، میزان کمانش الاستوپلاستیک کاهش می یابد. همچنین، در مخازن با قطر بزرگتر، خطر کمانش الاستوپلاستیک پافیلی بیشتر است.

4- در مخازن مورد مطالعه پدیده لغزش بستر اتفاق نمی افتد. تجربه زلزله های گذشته نمایان است که تا کنون در مخازن با قطر بزرگتر از 9 متر لغزش قابل ملاحظه ای نمایان و مشخص نیست.

بررسی مودهای شکست

5- با افزایش قطر مخازن دامنه نوسان سایل داخل آنها (Sloshing) نیز افزایش می یابد. لیکن با افزایش نسبت ارتفاع به قطر (H/D)، این دامنه کاهش می یابد. ارتفاع آزاد سایل حداقل بایستی 13 درصد ارتفاع کل مخزن باشد. تا از آسیب دیدگی سقف جلوگیری شود.

6- با افزایش نسبت ارتفاع به قطر (H/D)، میزان بلندشدگی کف و همین طور میزان نشست کف نیز افزایش می یابد. در مخازن بررسی شده که نسبت های ارتفاع به قطر کوچکتر از یک بوده است. (H/D≤I) میزان بلندشگی و نشست بستر کمتر از مقادیر مجاز آیین نامه ای می باشد.

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

tps://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: بررسی مودهای شکست لرزه ای و راهکارهای مقاومت سازی مخازن استوانه ای فولادی ,



بازدید : 215
نویسنده : جواد دلاکان

 

فولاد 4140-Mo40-در این تحقیق، ابتدا نمونه فولاد 4140. در دمای 850 درجه سانتی گراد به مدت 1 ساعت حرارت داده شدند. سپس در دمای 720 درجه سانتی گراد به مدت سه دقیقه نگهداری و به حمام نمک. با دماهای متفاوت 380-400-420- و 450 درجه سانتیگراد به مدت 4 دقیقه منتقل و در نهایت در آب کوئنچ گردیدند. بر اساس نتایج تست کشش با افزایش دمای حمام نمک. (دمای آستمپرینگ) مقادیر استحکام تسلیم، استحکام کششی. و ازدیاد طول کاهش می یابد. شکست نگاری نمونه های تست کشش با میکروسکوپ،. استریو نشان داد که با افزایش دمای حمام نمک،. سطح شکست از نرم به ترد تغییر می کند.

فولاد 4140-مقدمه

فولادهای سه فازی شامل کسر حجمی مشخصی از فازهای با استحکام بالا. مانند مارتنزیت و بینیت بوده که در زمینه نرم فریتی توزیع شده اند. زمینه نرم فریتی در این فولادها منجر به انعطاف پذیری بالا میشود،. در حالیکه استحکام و چقرمگی آنها به حضور جزایر سخت مارتنزیت. و بینیت در زمینه یاد شده بر میگردد. ترکیب استحکام و چقرمگی مناسب به همراه فرآیند تولید ساده این دسته از فولادها. آنها را بعنوان گزینه ای مناسب برای کاربرد در صنایع خودرو سازی و هوافضا مطرح کرده است. علاوه بر این، برخی دیگر از خواص مکانیکی مانند رفتار تسلیم پیوسته و نرخ کار سختی بالا،. این فولادها را نسبت به سایر فولادها متمایز می نماید.

 

اگرچه فولادهای کم آلیاژ استحکام بالا HSLA دارای استحکامی بالاتر از فولادهای فریتی – پرلیتی هستند اما شکل پذیری آنها. با مشکلات فراوانی رو به رو است، لذا انعطافپذیری مورد نیاز در طراحی قطعات با اشکال پیچیده،. استفاده از این فولادها را شدیداَ با محدودیت مواجه می کند. نتیجه این امر افزایش روز افزون کاربردهای فولادهای دو و سه فازی است.

 

بختیاری و اکرامی طی تحقیقی تأثیر مورفولوژی بینیت را بر خواص مکانیکی فولاد 4340. دو فازی فریتی-بینیتی بررسی و گزارش کردند مورفولوژی بینیت تابعی از دمای آستمپرینگ است. در دماهای بالا آستمپرینگ و نزدیک به دمای تشکلیل پرلیت،. ریز ساختار بینیت شامل بینیت بالا و توفال شکل است. و در دماهای پایین و نزدیک به دمای تشکیل مارتنزیت،. ریز ساختار بینیت شامل بینیت پایین و سوزنی شکل است که ترکیبی ا بهترین خواص (استحکام تسلیم،. استحکام کششی، ازدیاد طول، چقرمگی شکست و سختی) با مورفولوژی بینیت پایین. در دمای آستمپرینگ 350 درجه سانتیگراد حاصل می شود.

 

زارع و اکرامی با بررسی اثر کسر حجمی مارتنزیت بر خواص کششی فولادهای سه فازی. در دماهای پایین آستمپرینگ، نتیجه گرفتند که افزایش کسر حجمی مارتنزیت استحکام را افزایش میدهد.

وارشنی و همکارانش انعطافپذیری و استحکام فولادهای سه فازی شامل فریت، بینیت و آستنیت باقی مانده. را بررسی کردند و نتیجه گرفتند که با افزایش دمای آستمپرینگ. و همچنین افزایش سرعت کوئنچ کردن، استحکام تسلیم و استحکام کششی کاهش می یابد.

هاوران و همکارانش رابطه بین ریز ساختار بینیت و خواص مکانیکی فولادهای سه فازی کم آلیاژ. را بررسی کردند و گزارش دادند که ابا افزایش دمای کوئنچ،. از حجم فازهای بینیت و مارتنزیت کاسته و در نتیجه استحکام تسلیم و استحکام کششی کاهش می یابد.

تحقیق حاضر تأثیر دمای آستمپرینگ بر خواص کششی فولاد سه فازی فریت – بینیت-مارتنزیت. از جنس 4140 را مورد بررسی قرار میدهد.

مواد و روش انجام آزمایش

ماده اولیه مورد استفاده در این تحقیق بصورت میل گرد فولادی با قطر 10 میلی متر بود. آنالیز کوانتومتری این فولاد نشان میدهد که ترکیب آن مطابق با فولاد ASIS 4140 است. بررسی های متالوگرافی این فولاد با میکروسکوپ الکترونی روبشی میدانی مدل XMU mira 3 ساخت آلمان. و اچ شده با محلول تایتال 2 درصد نشان داد که ریز ساختار آن فریتی – پرلیتی می باشد.

برای ایجاد ریز ساختار فریت – بینیت – مارتنزیت

برای ایجاد ریز ساختار فریت – بینیت – مارتنزیت، ابتدا نمونه ها در دمای 850 درجه سانتیگراد. بمدت 60 دقیقه نرماله و سپس در 720 درجه سانتیگراد به مدت 3 دقیقه نگهداری شدند. پس از آن برای تشکیل مورفولوژی های مختلف بینیت، در حمام نمک با دماهای متفاوت 380، 400،420،450 درجه سانتیگراد. به مدت 4 دقیقه نگهداری و در آب کوئنچ شدند.

دماها و زمان های مذکور بر اساس نمودار دما – زمان – استحاله T-T-T فولاد 4140 انتخاب گردیده است. برای مثال در دماهای بالاتر از 720 درجه سانتیگراد، زمان اتمام استحاله در منطقه دوفازی فریت – آستنیت بسیار طولانی است. در دماهای کمتر از آن زمان استحاله خیلی کوتاه است و امکان تشکیل ریز ساختار کاملا فریتی وجود دارد. در نتیجه بهترین دما برای دو فازی کردن، دمای 720 درجه سانتیگراد می باشد.

 

که در این دما طبق نمودار T-T-T با گذشت زمان 3 دقیقه، در منطقه دو فازی هستیم. انتخاب محدوده دمایی 380 تا 450 درجه سانتیگراد به این دلیل است که. این محدوده دمایی، پایین تر از دمای تشکیل پرلیت و بالاتر از دمای تشکیل مارتنزیت می باشد. انتخاب زمان 4 دقیقه در این دما برای اطمینان از تشکیل بینیت است. در این تحقیق، از کوره عملیات حرارتی الکتریکی مدل AZAR 1250 ساخت ایران. و کوره حمام نمک مدل SAMIN 1250 ساخت ایران. و نمک مذاب AS140 استفاده گردید. با انتخاب نمک مناسب از تغییر ترکیب شیمیایی قطعه در حمام نمک جلوگیری میشود حمام نمک. موجب تغییر دمای کل قطعه با سرعت یکسان می گردد. نمونه های تست کشش با استاندارد ASTM E8/E8M آماده سازی. و توسط دستگاه یونیورسال با سرعت 1 میلیمتر بر دقیقه تحت آزمون قرار گرفتند.

نتایج و بحث

مطالعه ریز ساختار نمونه های عملیات حرارتی شده با میکروسکوپ الکترونی روبشی. (تصویر برداری توسط الکترون های ثانویه نشان داد با توجه به انتخاب دماهای مختلف آستمپرینگ. 380، 400، 420 و 450 درجه سانتیگراد، بینیت تشکیل شده در ساختار سه فازی، مورفولوژی های مختلفی دارد. دو فاز مارتنزیت و بینیت به صورت تیغه های روشن و فاز فریت (فاز زمینه) به رنگ تیره دیده میشود.

مشاهده ریز ساختار نمونه های عملیات حرارتی شده

مشاهده ریز ساختار نمونه های عملیات حرارتی شده و استفاده از نرم افزار. آنالیز تصویری MIP 4 student نشان داد که حجم فریت در تمامی آنها مقدار ثابت 33/4 درصد است. در نتیجه حجم فازهای سخت مارتنزیت و بینیت 66/6 درصد می باشد.

فولاد 4140

تصاویر میکروسکوپ الکترونی با بزرگنمایی یکسان از فاز بینیت در نمونه های آستمپرینگ شده در دماهای مختلف را نشان میدهد. الف- وجود تیغه های موازی سوزنی شکل بینیت در نمونه آستمپرینگ شده. در دمای 380 درجه سانتیگراد قابل مشاهده است این ساختار با توجه به دمای آستمپرینگ. نزدیک به Ms، ساختار بینیت پایین است. ب-تیغه های موازی سوزنی شکل به همراه صفحات ضخیم از سمنتیت و فریت را نشان میدهد. که نشانگر مخلوط بینیت بالا و بینیت پایین در نمونه عملیات حرارتی شده. در دمای آستمپرینگ 400 درجه سانتی گراد است.

 

ج- مورفولوژی بینیت در دمای آستمپرینگ 420 درجه سانتیگراد را نشان می دهد. در این تصویر فقط بینیت بالایی که متشکل از لایه های ضخیم سمنتیت و فریت می باشد قابل مشاهده است. د- نشان میدهد که مورفولوژی بینیت در دمای آستمپرینگ 450 درجه سانتیگراد. همانند دمای 420 درجه سانتیگراد است با این تفاوت که صفحات سمنتیت موجود در بینیت بالایی. در دمای 450 درجه سانتیگراد، ضخیم تر می باشند.

 

مقادیر استحکام تسلیم، استحکام کششی نهایی و ازدیاد طول نسبی نمونه ها ارائه شده است. الف و ب نشان میدهد که استحکام تسلیم و استحکام کششی نهایی با افزایش دمای آستمپرینگ. در اثر تغییر مورفولوژی از بینیت پایین با مورفولوژی سوزنی شکل به بینیت بالا با مورفولوژی توفال شکل. شامل لایه های ضخیم سمنتیت، کاهش می یابد. ج- افزایش دمای آستمپرینگ، درصد ازدیاد طول نسبی را کاهش میدهد. که این مطلب در توافق با تغییر مورفولوژی بینیت پایین به بینیت بالا میباشد.در واقع یکی از ویژگیهای خوب مورفولوژی بینیت پایین، علاوه بر استحکام بالای آن، بالا بودن چقرمگی آن است.

 

سطح زیر نمودار تنش- کرنش معیار خوبی برای مقایسه چقرمگی مواد از طریق تست کشش می باشد. افزایش سطح زیر منحنی تنش-کرنش، گویای چقرمگی بالاتر و رفتار نرم تر ماده در مقابل شکست است. نمودار تنش – کرنش نمونه های آستمپرینگ شده در دماهای مختلف مشخص است. همانطور که مشخص است، مساحت زیر نمودار با افزایش دمای آستمپرینگ کاهش می یابد،. لذا میتوان نتیجه گرفت که بینیت پایین علاوه بر استحکام بالا دارای چقرمگی بالاتری نیز است.

تصاویر میکروسکوپ استریو از سطوح شکست

تصاویر میکروسکوپ استریو از سطوح شکست نمونه های تست کشش آستمپرینگ شده در دماهای مختلف. را نشان میدهد سطح شکست نمونه آستمپرینگ شده در دمای 380 درجه سانتیگراد. دارای علائم شعاعی با الگوی ستاره ای شکل به همراه لبه برشی می باشد. که مشخصه سطح شکست نرم است. این شکل دارای بزرگترین لبه برشی می باشد که نشان دهنده آن است که در این نمونه. بیشترین باریک شدگی (حالت گلویی در تست کشش) و در نتیجه. بیشترین تغییر شکل پلاستیک قبل از شکست رخ داده است. هرچقدر عمق و ضخامت علائم شعاعی زیادتر باشد، رفتار شکست، نرم تر خواهد بود.

 

حجم برآمدگی الگوهای ستاره ایی -الف-کمتر شده و منطقه لبه برشی آن نیز کوچکتر شده است. که نشان از رفتار ترد تر نمونه آستمپرینگ شده در دمای 400 درجه سانتیگراد. نسبت به دمای 380 درجه سانتیگراد دارد. ج و د، الگوی ستاره ای شکل و همچنین مناطق لبه برشی حذف شده است. که گویای وقوع شکست ترد و عدم گلویی شدن این نمونه ها است. این مشاهده ها با نتایج ازدیاد طول نسبی به دست آمده از تست کشش مطابقت دارد.

نتیجه گیری

در این تحقیق چند سیکل عملیات حرارتی با دمای آستمپرینگ مختلف. 380،400،420 و 450 درجه سانتیگراد بر روی نمونه فولاد 4140 برای ایجاد ساختار سه فازی. فریت-بینیت-مارتنزیت مورد بررسی قرار گرفت

نتایج مشاهده ریزساختاری و تست کشش نشان دادند که:

1- در بازه دمایی 380 تا 450 درجه سانتیگراد، مورفولوژی بینیت از بینیت پایین سوزنی شکل. به بینیت بالا لایه ای و توفال شکل تغییر می یابد.

2- با افزای دمای آستمپرینگ، مقادیر استحکام تسلیم، استحکام کششی نهایی. و ازدیاد طول نسبی کاهش می یابند که متأثر از تغییر مورفولوژی بینیت است.

3- سطح زیر منحنی تنش – کرنش نمونه آستمپرینگ شده در دمای 380 درجه سانتیگراد. بیش از سایر نمونه ها است که نشان از چقرمگی بالاتر این نمونه دارد. و بررسی های شکست نگاری نیز رفتار شکست نرم تر این نمونه نسبت به سایر نمونه ها را تأیید کرد.

Mo40-فولاد 4140-تأثیر شرایط عملیات حرارتی بر خواص کششی فولاد سه فازی

آموزشکده فنی و حرفه ای سماد دانشگاه آزاد اسلامی واحد دزفول

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶


:: برچسب‌ها: فولاد 4140 , تأثیر شرایط عملیات حرارتی بر خواص کششی فولاد سه فازی , MO40 , ,



اصول طراحی شفت
نوشته شده در سه شنبه 19 مهر 1401
بازدید : 224
نویسنده : جواد دلاکان

اصول طراحی شفت- محور، عضوی چرخشی یا ثابت و معمولاً با مقطع دایروی است. که روی آن اجزایی مانند چرخنده ها، چرخ تسمه، چرخ لنگر، لنگها، چرخ زنجیرها و سایر اجزای انتقال قدرت نصب می شوند. محورها ممکن است تحت بارهای خمشی، کششی، فشاری یا پیچشی که به تنهایی یا همراه با هم وارد می شوند قرار گیرند. هنگامی که این بارها ترکیب شوند.

اصول طراحی شفت

اصول طراحی شفت

می توان انتظار داشت که استحکام استاتیکی و خستگی هر دو به عنوان ملاحظات مهم طراحی مد نظر قرار گیرد. چون هر محور به تنهایی ممکن است. تحت تنش های استاتیکی، تنش های معکوس شونده و تنش های تکراری که همگی در یک زمان اعمال می شوند قرار گیرد. لغت “محور” انواع مختلفی مانند اکسل ها و اسپیندل ها را در بر می گیرد. اکسل محوری است که ساکن یا چرخان است. و تحت بار پیچشی قرار نمی گیرد. محور کوتاه چرخشی، غالباً اسپیندل نام دارد.

از آنجایی که خیز جانبی یا پیچشی محور باعث در محدوده بسیار محدودی نگه داشته شود. قبل از تحلیل تنش ها باید ابعاد آن را بر اساس خیز تعیین کرد. دلیل این مطلب آن است که اگر محور به اندازه کافی محکم ایجاد شود. طوری که خیز چندان زیاد نباشد، احتمال دارد که تنش های حاصل ایمن باشند. ولی به هیچ وجه طراح نباید فرض کند که محور ایمن است. تقریباً همیشه محاسبات باید انجام گیرد.

 

تا معلوم شود که مقادیر در حد قابل قبول هستند. طراحی محور یک مسئله اساسی در طراحی و ساخت پمپ به شمار می رود. در طراحی محور، تمامی اصول طراحی که شامل طراحی یاتاقان ها و چرخنده ها می باشد. نیز مورد استفاده قرار می گیرد. محورهای انتقال گشتاور را از یک منطقه به منطقه ای دیگر انتقال می دهند. اسپیندل ها شفت های کوتاهی هستند و اکسل ها شفت های غیر چرخشی می باشند. در شکل زیر مثالی از یک طراحی معمولی از یک شفت را مشاهده می کنید.

اصول طراحی شفت

بارهای یک شفت

.پیچش ناشی از گشتاور انتقالی

.خمش ناشی از بارهای متقاطع (چرخ دنده ها، پولیها و غیره)

اتصالات و مراکز تنش

انواع اتصالات مورد استفاده در شفت ها در شکل زیر مشاهده میشود:

اصول طراحی شفت

موارد مورد استفاده در ساخت شفت

فولاد (فولاد با کربن کم تا متوسط)

چدن

برنز یا فولاد ضد زنگ

فولاد سخت کاری شده

انحراف در نتیجه میزان استحکام شفت نمی باشد. اما با استحکام مورد ارائه توسط مدول الاستیسیته که برای تماس فولادها ثابت می باشند. متناسب می باشد. بسیاری از شفت ها از فولادهای کربن پایین نورد گرم یا سرد. مثل فولادهای 1050-1020 (بر اساس استانداردهای مؤسسه استاندارد آمریکا). معمولی برای گرمکاری عبارتند از: (50-1340) (50-3140) (4140) (4340) (5140) (8650) .

 

برای شفت ها معمولاً نیازی به سخت کاری سطحی نمی باشد. مگر در حالتی که به عنوان تکیه گاه اصلی یاتاقان مورد استفاده قرار گیرند. مواد انتخابی برای سختکاری سطوح شامل درجات سختکاری سطحی مواد 1020،4320،4820،8620 فولادهای مورد سردکاری. معمولاً برای شفت هایی با قطر کمتر از سه اینچ استفاده می شوند.

قدرت شفت

قدرت شفت همان نرخ زمانی تغییرات انرژی می باشد (کار). کار برابر است با:

تمامی موارد بالا، می توانند در مواردی به صورت ترکیبی در غالب تئوری و رابطه فون میسس نیز ارائه شوند.

در شکل زیر خرابی های شفت را در بارگذاری های ترکیبی مشاهده می کنید.

اصول طراحی شفتشکل شماره 3- خرابی های شفت در بارگذاری های ترکیبی

طراحی شفت

در حالت کلی برای طراحی یک شفت موارد زیر می بایست مورد نظر باشد.

-برای کاهش انحرافات و تنش ها، طول شفت باید تا حد امکان کوتاه مورد نظر قرار گیرد.

-تیر کی که تنها در یک انتها بصورت صلب به تکیه گاهی متصل شده است. دارای انحراف بیشتری نسبت یک تیر محاط شده توسط پایه ها می باشد ( با همان طول، قطر و بار وارده).

-یک شفت توخالی دارای نسبت استحکام به جرم و فرکانس های طبیعی بیشتری نسبت به یک شفت تو پور است. اما این شفت دارای قطر و قیمت بالاتری خواهد بود.

-سعی شود تا حد امکان افزایش دهنده های تنش، از مکان های دارای ممان خمشی بزرگ دور نگه داشته شوند. و تأثیراتشان از طریق شعاع بزرگتر و آزادی بیشتری کاهش یابد.

اصول طراحی شفت

-فولادهای کربن پایین معمولی به خوبی فولادهای با مقاومت های بالاتر هستند.

-انحراف در محدوده یاتاقان ها نباید از حد 0.005 اینچ تجاوز کند. و شیب وابسته بین محور چرخ دنده ها باید کمتر از 0.03 درجه باشد.

-اگر از یاتاقان های ساده (غلاف دار) استفاده شود. میزان انحراف شفت باید از میزان ضخامت نوار روغن در یاتاقان کمتر باشد.

-اگر از یاتاقان های خود تراز نشوندنه استفاده شود. شیب شفت در قسمت پاتاقان ها باید از میزان 0.04 درجه کمتر باشد.

-اگر بازها تراست محوری موجود باشند. باید از طریق یک یاتاقان تراست تک در جهت هر بار به زمینه انتقال داده شوند. بارهای محوری را بین یاتاقان های تراست تقسیم نکنید. زیرا ممکن است انبساط حرارتی شفت سبب ایجاد بارهای اضافی در یاتاقان ها شود.

-اولین فرکانس طبیعی شفت باید به طور حداقل 3 برابر بالاترین فرکانس نیروی محرک سیستم باشد. یا حتی در بسیاری از موارد عدد بالاتری مورد نظرمی باشد.

طراحی کامل از روش کد ASME

در سال 1972 انجمن آمریکایی مهندسان مکانیک کدی را برای طراحی محورهای انتقال بنا نهاد. در حال حاضر، سالیان زیادی است که این کد کنار گذاشته شده است. ولی از لحاظ تاریخی قابل توجه می باشد. که مورد نظر، یک تنش برشی مجاز تعریف می کند. که مقدار کوچکتر، از میان دو مقدار زیر می باشد.

این کد می گوید که اگر تمرکز تنش ناشی از قوس پله یا جای خار ظاهر شود. این تنش باید 25 درصد کاهش یابد. اگر به جای T max در معادله ، tp را بگذاریم، خواهیم داشت.

در کد گشتاور خمشی و گشتاور پیچشی به ترتیب در ضریبهای ترکیبی شوک و خستگی Ct , Cm نسبت به شرایط هر کاربرد ضرب می شوند. پس خواهیم داشت.

اصول طراحی شفت

با توجه داشت که تنش طراحی در معادله مقدار مجاز پیشینه است. و طراح آزاد است که در صورت اقتضای شرایط، آن را کاهش دهد.

-خمش معکوس شونده و پیچش پایدار

هر محور چرخانی که تحت گشتاورهای خمشی و پیچشی ساکن بارگذاری گردد. به دلیل چرخش محور، تحت تنشی کاملاً معکوس شونده تنش گذاری می شود. ولی تنش پیچشی پایا خواهد ماند. این حالت بسیار معمول است. و احتمالا بیش از سایر بارگذاریها رخ می دهد. با استفاده از اندیس a برای تنش متناوب و اندیس m برای تنش میانگین معادله ها را می توان به صورت زیر بیان کرد.

اگر Se را به عنوان حد دوام کاملاً تصحیح گردد و n را به عنوان ضریب ایمنی مشخص کنیم. معادله طراحی چنین خواهد شد.

-روش سادربرگ

در ساده ترین کاربرد نمودار سادربرگ که در قسمت زیر مشاهده می کنید. از آن برای تعیین اندازه های قطعه ماشینی استفاده می شود. که باید تنش پایا و تنش متناوبی از همان نوع را تحمل کند.

اصول طراحی شفت

نمودار سادربرگ استحکام برشی را نشان می دهد. تنش های برشی متناوب بر محور عمودی رسم می شوند. در حالی که تنش های برشی استاتیکی یا میانگین روی محور افقی رسم می شوند. همانگونه که در شکل معلوم و مشخص است. خط سادربرگ خط مستقیمی بین حد دوام برشی کاملاً تصحیحی Sse و استحکام تسلیم در برش Ssy است. باید توجه شود که حد دوام برشی، حد دوام جزء ماشین پس از به حساب آوری اندازه پرداخت سطح. قابلیت اعتماد، عمر، تمرکز تنش و غیره با استفاده از معادله زیر می باشد.

که در آن Se حد دوام جزء مکانیکی S’e حد دوام نمونه تیر چرخان، Ka ضریب سطح، Kb ضریب اندازه. Kc ضریب قابلیت اعتماد، Kd ضریب دما، Ke ضریب اصلاحی برای تمرکز تنش و Kf ضریب اثرهای دیگر می باشد. برای به دست آوردن ضریب ایمنی n می توان از رابطه یر استفاده کرد.

اصول طراحی شفت

اصول طراحی شفت

روش گودمن

این روش، روشی محتاطانه است که می توان هرجا که احتمال گسیختگی خستگی وجود داشته باشد. از آن استفاده کرد. در روش جبری، رابطه گودمن به صورت زیر نوشته می شود.

اصول طراحی شفت

روش کلی

با توجه به ثابت های k,m,p ارائه شده در جدول شماره 2، از معادله زیر می توان برای بیان همه آنها استفاده کرد.

پس خواهیم داشت.

معادله بالا، معادله مارین نامیده می شود.

اصول طراحی شفت

محاسبه سرعت بحرانی شفت

روتور دینامیک بعنوان شاخه ای از علم مکانیک معروف و مورد تأیید است. که سرعت بحرانی را بعنوان سرعت زاویه ای که فرکانس طبیعی بعضی از اجزای چرخشی را تحریک می کند، تعریف می کند. در مورد پمپ های سانتریفیوژی که سیستم انتقال قدرت از الکتروموتور به پروانه توسط شفت انجام می شود. این سرعت، چرخی اندازه گیری شده است. که در آن ارتعاشات طبیعی رخ دهد. بسیار دور از انتظار نیست که انحراف شعاعی مورد ایجاد به وسیله وزن پروانه. حتی با وجود نصب صحیح و متعادل پروانه، سبب ارتعاشات در یک پمپ افقی شود.

اصول طراحی شفت

ارتعاشاتی که در یک موتور، متوازن، در یک سرعت چرخشی مخصوص، ایجاد می شود. توسط اختلاف کوچکی در دانسیته روتور و انحراف کوچک تراشکاری ایجاد می شود. این موضوع سبب جابه جایی کوچک مرکز جرم از مرکز محور چرخش میشود. با افزایش سرعت، نیروهای الاستیک فلز و نیروهای شعاعی ایجاد شده به وسیله چرخش، نامتوازن می شوند. و ارتعاش اتفاق می افتد. این ارتعاشات طبیعی رخ دهد. بسیار دور از انتظار نیست که انحراف شعاعی ایجاد شده. به وسیله وزن پروانه، حتی با وجود نصب صحیح و متعادل پروانه سبب ارتعاشات در یک پمپ افقی شود.

 

ارتعاشاتی که در یک روتور متوازن، در یک سرعت چرخشی مخصوص، ایجاد می شود. توسط اختلاف کوچکی در دانسیته روتور و انحراف کوچک تراشکاری ایجاد می شود. این موضوع سبب جا به جایی کوچک مرکز جرم از مرکز محور چرخش می شود. با افزایش سرعت، نیروهای الاستیک فلز و نیروهای شعاعی ایجاد شده به وسیله چرخش، نامتوازن می شوند و ارتعاش اتفاق می افتد.

 

این ارتعاشات انحراف شفت را زیاد می کند. و میتواند سبب ساییدگی اجزاء، (آب بندها، یاتاقان ها) و حتی شکستگی شفت شود. اگر سرعت همچنان افزایش یابد، این فرکانس طبیعی ناپدید میشود. و ارتعاشات متوقف می شود. اما در سرعت های بالاتر با فرکانس طبیعی دیگر مواجه میشویم. پایین ترین سرعت چرخشی که این ارتعاش طبیعی اتفاق می افتد. سرعت بحرانی نام دارد. معمولاً محدوده سرعت بحرانی از محدوده سرعت کاری پمپ ها فاصله دارد. اگر محدوده سرعت بحرانی کوچک باشد، بهتر است قبل از سرعت کاری پمپ قرار گیرد. در این صورت شفت را انعطاف پذیر می گویند و در صورتی که بعد از سرعت کاری را قرار گیرد. شفت را صلب یا محکم می نامند. لازم به ذکر است که سرعت بحرانی پمپ و شفت مفهومی جدا از یکدیگر نمی باشند.

محاسبه سرعت بحرانی شفت (پمپ)

هنگامی که پمپ دارای شفت کوتاه و صلب باشد. و در سرعت طراحی خود عمل کند پدیده رزنانس مورد توجه قرار نمی گیرد. سرعت بحرانی پمپ به صورت مستقیم به انحراف استاتیکی. و انحراف استاتیکی به صورت مستقیم به وزن روتور، طول قسمت یک سر آزاد (آویخته) و قطر آن بستگی دارد. در حالت واقعی انحراف به دلایل الاستیسیتی، اینرسی، پایه های یاتاقان و طول متغییر شفت بسیار پیچیده می باشد. مقدار انحراف شفت در اثر بار وارد بر آن از رابطه زیر محاسبه می شود.

که در فرمول Y انحراف بر حسب اینچ یا میلی متر، W نیروی وارد بر پروانه. و یا وزن متعلقات چرخشی بر حسب پوند یا نیوتن، L طول شفت از مرکز یاتاقان داخلی تا مرکز پروانه. بر حسب اینچ یا میلی متر، E مدول الاستیسیته ی فلز مورد استفاده در شفت و 1 ممان اینرسی برای شفت می باشد. که برابر است با:

همچنین میزان انحراف شفت در اثر وزن خود شفت نیز از رابطه زیر محاسبه می شود:

که در آن w وزن شفت بدون پروانه است.

که در نهایت، انحراف کلی حالت استاتیک شفت برابر است با:

 

حال اگر شفت مورد نظر ما شفتی با قطرهای متفاوت (چند قطری) بود از رابطه زیر محاسبه می کنیم.

که در آن داریم:

Y: انحراف شفت در خط مرکزی پروانه.

F: همان نیروی وارد بر پروانه است که در فرمول های بالا به شکل W بیان شده بود. (به این نیرو عدم توازن شعاعی هیدرولیکی نیز می گویند).

M&N: فاصله خط مرکز پروانه به طبقه های (پله ها) روی شفت.

L: فاصله خط مرکز پروانه به خطر مرکز یاتاقان داخلی.

X: فاصله بین دو خط مرکز یاتاقان ها.

Jx,Jn,Jm,Jl. ممان اینرسی قطرهای مختلف.

E: مدول الاستیسیته ماده مورد استفاده در شفت

برای محاسبه نیروی عدم توازن هیدرولیکی شعاعی خواهیم داشت:

که در آن K فاکتور تراست شعاعی (بین 0.3 تا 0.35)، S.G. گرانش مخصوص سیال H هد کلی بر حسب متر در حالت نقطه بالاترین کارائی، B2. پهنای پروانه شامل دیوارها به سانتی متر، D2 قطر خارجی پروانه به سانتی متر و داریم:

 

که در آن Ϙ دبی حقیقی پمپ بر حسب متر مکعب بر ساعت و Ϙn دبی پمپ. در حالت نقطه بالاترین کارائی بر حسب متر مکعب بر ساعت می باشد.

در ادامه برای مقایسه دو پمپ با شفت های متفاوت و کاربردهای یکسان از پارامتری به نام فاکتور باریک شوندگی شفت استفاده می کنیم. این پارامتر با در نظر گرفتن پارامترهای ابعادی شفت. و نیز در نظر گرفتن ضرائب ثابت موجود در معادله 2 بصورت زیر به دست می آید:

اگر این فاکتور از لحاظ مقداری کمتر از عدد 2 باشد (در سیستم SI) ما مشکلات زیادی با میزان خمش شفت نخواهیم داشت. اما اگر این مقدار بیشتر از عدد 2 باشد امکان بروز مشکل در آب بندها، خود شفت و یاتاقان های پمپ وجود دارد.

فاکتور دیگری که در این قسمت مورد مطالعه قرار می گیرد. شامل فاکتور سختی یا انعطاف پذیری است. فاکتور سختی پارامتر مهمی در ماندگاری المان های چرخشی پمپ به حساب می آید. این فاکتور به ترتیب زیر محاسبه می شود:

 

که در آن X محدوده یاتاقان ها و d قطر شفت در محل قرار گرفتن پروانه می باشد. فاکتور انعطاف پذیری به طور مستقیم با انحراف استاتیکی شفت در ارتباط است. جدول زیر محدوده مقادیر خروج از مرکز شفت و روتور را بر حسب میزان فاکتور انعطاف پذیری نشان می دهد. (این جدول بر اساس استاندارد API610 می باشد).

اصول طراحی شفت

در اینجا بهتر است یادآوری کنیم که هر قطعه ساخته شده از مواد الاستیک دارای دوره تناوبی طبیعی خواهد بود. این اتفاق به دلیل یکنواخت نبودن شفت و اختلاف دانسیته آن در هنگام ساخت می باشد. این خروج از مرکز در هنگامی که شفت در سرعتی بچرخد که نیروی گریز از مرکز آن از نیروی مقاومت الاستیک آن بیشتر باشد. سبب ایجاد انحراف می شود. در این سرعت شفت و متعلقات آن در صورت عدم توازن، مرتعش می شوند و این ارتعاش می تواند. سبب از بین رفتن آب بندها و یاتاقان ها و نیز خستگی خود شفت شود. به پایین ترین سرعتی که این اتفاقات رخ می دهد. سرعت بحرانی اول میگویند. پس از به دست آوردن میزان انحراف شفت در محل اتصال پروانه. برای بدست آوردن میزان سرعت بحرانی اول از یکی ا معادلات زیر استفاده می کنیم.

 

که در آن Nc سرعت بحرانی شفت می باشد.

برای ثابت نگه داشتن فواصل داخلی رینگ های سایشی پمپ های با پروانه. برای جلوگیری از برخورد پروانه به محفظه و یا صفحه پشتی در پمپ های پروانه باز، اغلب کمپانی های پمپ سازی تمایل دارند. که انحراف شفت پمپ خود را در بازه 0.005 تا 0.006 اینچی (0.125 تا 0.150 میلی متر) محدود کنند با این اعداد خواهیم داشت:

اصول طراحی شفت

این محدودیت ها برای پمپ هایی با حداکثر دور 1750 دور بر دقیقه مناسب می باشد. ولی برای پمپ هایی با دور بالاتر این محدودیت ها قابل قبول نمی باشد.

برای دانستن میزان انحراف شفت در پمپ های سانتریفیوژ، داشتن اطلاعات کافی در مورد نیروی شعاعی موجود در پمپ بسیار ضروری می باشد.

 

مثال محاسبه سرعت بحرانی شفت پمپ سانتریفیوژ OH2-25-200L

مشخصات پمپ

1- قطر شفت در کمترین قسمت 16 میلی متر

2- قطر شفت در بیشترین قسمت 32 میلی متر

3- طول شفت از قسمت یاتاقان داخلی تا مرکز پروانه 160 میلی متر.

4- مدول الاستیسیته فلز مورد استفاده در ساخت شفت (کربن استیل) 106*0.2.

5- ممان اینرسی شفت 7853.98 می باشد.

6- وزن شفت و متعلقات آن برای محاسبه نیروی وارد بر پروانه 7.5 کیلوگرم. (وزن پروانه 1400 گرم، وزن شفت 4250 گرم و وزن بلبرینگ های آن 1850 گرم می باشد.

اصول طراحی شفت

اصول طراحی شفت

ابتدا به محاسبه نیروی عدم توازن هیدرولیکی شعاعی می پردازیم. این نیرو طبق روابط زیر محاسبه می شود:

با توجه به دبی واقعی پمپ که 3 متر مکعب بر ساعت می باشد. و دبی آن در حالت بالاترین نقطه کارایی که 3.5 متر مکعب بر ساعت است. خواهیم داشت:

اصول طراحی شفت

فاکتور تراست فرمول بالا، از طریق سرعت مخصوص پمپ نمودار مربوطه که در شکل زیر مشاهده می کنید محاسبه می شود.

اصول طراحی شفت

 

با توجه به الگوریتم زیر که برای محاسبه میران انحراف شفت و سرعت اول بحرانی نوشته شده است. مشاهده می شود که تفاوت بسیاری در این دو مورد مشاهده نمی شود.

اصول طراحی شفت

اصول طراحی شفت

مشاهده می کنیم که این عدد با توجه به سرعت پمپ که 2900 دور بر دقیقه است. در حدود 33 درصد بالاتر از این سرعت می باشد. که با توجه به استاندارد API610 این سرعت باید حداقل 20 درصد بالاتر از سرعت عملکرد دائمی پمپ باشد. که این شرایط به طور کامل رعایت شده است.

از این رو می توان نتیجه گرفت که طراحی شفت پمپ صحیح و از ضریب ایمنی بالایی برخوردار می باشد.

گرد آوری / بخش تحقیق و توسعه گروه صنعتگران آریا سپهر کیهان

 

 

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: اصول طراحی شفت ,



بازدید : 193
نویسنده : جواد دلاکان

استیل 321 – ورق استیل 321- میلگرد استیل 321 -لوله استیل 321-کاربردهای استیل 321 – تسمه استیل 321 – قوطی استیل – ویژگی های خاص فولاد ضد زنگ آستنیتی

 

 

 

 

 

 

استیل 321 -ورق استیل 321-میلگرد استیل 321-لوله استیل 321

ویژگی های خاص فولاد ضد زنگ آستنیتی

آلیاژ 321 (UNS S32100) یک فولاد ضد زنگ آستنیتی تیتانیوم مورد تثبیت با مقاومت به خوردگی خوب است.

پس از قرار گیری در معرض دما در محدوده بارندگی کروم کاربید. 800 – 1500 درجه فارنهایت (427 – 816 درجه سانتی گراد) مقاومت بسیار خوبی در برابر خوردگی بین دانه ای دارد.

استیل 321 مقاومت به اکسیداسیون به 1500 درجه فارنهایت (816 درجه سانتی گراد) دارد.

دارای ویژگی های خزش و پارگی استرس نسبت به آلیاژهای استیل 304 و 304L است.

همچنین دارای چگالی کم دما است.

آلیاژ (UNS S32109) 32H کربن بالاتر (0.10-0.04) نسخه آلیاژ است.

این برای افزایش مقاومت خزش و برای افزایش مقاومت در دمای بالا توسعه یافت.

بالاتر از 1000 درجه فارنهایت (537 درجه سانتی گراد). در بیشتر موارد، محتوای کربن plate باعث صدور گواهینامه دوگانه می شود. با استفاده از کار سرد، نمک 321 نمیتواند توسط عملیات حرارتی سخت شود. این می تواند توسط شیوه های ساخت استاندارد پردازش و جوش انجام شود.

کاربردهای استیل 321

  • منیفولد موتور هواپیما و پیستون
  • فرآوری شیمیایی
  • اتصالات انبساط
  • فرآوری مواد غذایی و تجهیزات و ذخیره سازی
  • پالایش نفت – سرویس اسید پلی اتیونیک
  • تصفیه پسماند – اکسید کننده های حرارتی

در تولید ورق های استیل از انواع مختلفی از گریدهای استنلس استیل استفاده می شود که کاربردهای آنها را تعیین می کند. برخی گریدها هستند که در صنعت کاربرد بیشتری دارند. و شما به عنوان یک صنعتگر برای انتخاب بهترین متریال و ورق استیل، باید از آن ها اطلاع داشته باشید.

جوشکاری ورق استیل 321

فولادهای زنگ نزن آستنیتی به عنوان فولاد زنگ نزن با قابلیت بالای جوشکاری مورد نظر قرار می گیرد. و می توان آنها را با تمام فرایندهای جوشکاری جوش داد.

دو ملاحظه مهم در تولید اتصالات جوشکاری در فولادهای زنگ نزن آستنیتی عبارتند از:

1- حفظ مقاومت در برابر خوردگی

2- جلوگیری از ترک خوردگی

حفظ سطح عنصر تیتانیوم در فولاد زنگ نزن 321 در هنگام جوشکاری بسیار مهم است.برای جلوگیری از دریافت کربن از روغن و سایر منابع و ازت از هوا باید مراقبت شود. روش های جوشکاری که شامل توجه به تمیزی و محافظت از گاز بی اثر خوب برای این گریدهای که پایدار است. و همچنین سایر آلیاژهای آستنیتی غیر تثبیت شده توصیه می شود. فلز که مورد جوشکاری است. با ساختار کاملا آستنیتی در هنگام عمل جوشکاری بیشتر در معرض ترک خوردگی است.

به همین دلیل، استنلس استیل 321 برای تصفیه مجدد با مقدار کمی فریت که طراحی می شود. تا حساسیت به ترک خوردگی را به حداقل برساند.

فولادهای زنگ نزن پایدار شده کلمبیوم بیشتر از فولادهای زنگ نزن پایدار شده تیتانیوم مستعد ترک خوردگی داغ هستند. فلزات پرکننده همسان برای چوشکاری فولاد زنگ نزن پایدار شده نوع 321 در دسترس هستند. آلیاژهای پایدار شده ممکن است به سایر فولادهای زنگ نزن یا فولادهای کربنی متصل شوند.

شکل دهی ورق استیل 321

این آلیاژ کاملاً در دمای پایین شکل پذیر است و به راحتی شکل می گیرد. برای شکل دهی گرم نیز دمای کاری 2100 – 2300 درجه فارنهایت (1149 – 1260 درجه سانتی گراد). برای فورج و سایر فرآیندهای گرم کاری توصیه می شود.

همچنین توصیح شده این آلیاژ را در دمای زیر 1700 درجه فارنهایت (927 درجه سانتی گراد) شکل دهی نکنید. برای رسیدن به حداکثر مقاومت در برابر خوردگی، مواد باید آب آن را شسته یا کاملاً آنیل شوند.

استاندارد

ASTM A240

ASME SA 240

AMS 5510

استیل 321

مقاومت در برابر خوردگی آلیاژ 321

  • آلیاژ 321 دارای مقاومت خوردگی بینظیری می باشد که قابل مقایسه با 304 است.
  • برای استفاده در محدوه بارندگی کربن کاربید 1500 – 1800 درجه فارنهایت (427 -816 درجه سانتی گراد). جایی که آلیاژهای ثبات ناپذیر مانند 304 در معرض حمله بین گرانول قرار می گیرند.
  • آلیاژ را می توان در اکثر اسیدهای آلی که رقیق است. در دمای متوسط و در اسید فسفریک خالص در دماهای پایین تر و تا 10% محلول های که رقیق است. در دمای بالا استفاده کرد.
  • آلیاژ 321 در برابر ترک خوردگی فولاد مقاوم در برابر خوردگی در خدمات هیدروکربن مقاومت می کند.
  • همچنین می تواند در محلول های اکسید کلراید یا فلوراید آزاد در دمای متوسط استفاده شود.
  • آلیاژ 321 در محلول کلراید حتی در غلظت های کوچک یا در خدمات اسید سولفوریک کارایی خوبی ندارد.

داده های ساخت استیل 321

آلیاژ 321 را می توان به راحتی جوش می دهندو با شیوه های ساخت استاندارد پردازش کرد.

ماشینکاری

میزان سخت شدن کار سرد 321 باعث می شود. ماشینکاری کمتر از فولاد ضد زنگ 410، اما مشابه 304.

فولاد نسوز آستنیتی

هنگامی که نیکل (بیش از 8%) به فولادهای کروم آهن اضافه شود، ساختار فولاد به ساختار آستنیتی، بدون تغییر تبدیل می شود.

در این صورت فولاد دارای یک ساختار کریستالی مکعبی با وجوه پر می باشد.

فولاد نسوز آلیاژی -فولادهای آستنیتی از استحکام، انعطاف پذیری و مقاومت به خزش بیشتری نسبت به فولادهای نسوز فریتی / مارتنزیتی برخوردارند.

چقرمگی بالای این فولادها، باعث می شود در برابر نیروهای ضربه و تغییرات ناگهانی دما، حساس نباشند. در این فولادها، درشت شدن دانه در دمای بالا اتفاق نمی افتد.

این فولادها، از استحکام دمایی و همچنین استحکام خزشی بالاتری نسبت به فولادهای فریتی برخوردار هستند.

فولادهای آستنیتی، در دمای اتاق چقرم تر بوده و شکل پذیری خوبی دارند. به طور کلی ساخت این فولاد آسانتر بوده و به گازهای سولفور حساس هستند.

ماشینکاری این فولادها، در مقایسه با فولادهای فریتی دشوارتر است و به دلیل داشتن آلیاژ بیشتر گران تر هستند.

گریدهای فولاد نسوز آستنیتی

  • 1.4828 Wnr
  • 1.4841 Wnr
  • 1.4845 Wnr

فولادهای نسوز آستنیتی : نسبت به فولادهای فریتی دارای درجه حرارت و استحکام خزشی بسیار بالاتری هستند.

  • (8-H) 1.4828 Wnr: به خوردگی بین مرزدانه ای حساس نیست، مقاومت به خوردگی کمی در برابر اکسیداسیون و کاهش گازهای گوگردی ایجاد می کند. مقاوم در برابر حرارت تا 1000 درجه سانتی گراد
  • (9-H) 1.4845 Wnr: مقاوم در برابر حرارت تا 1050 درجه سانتی گراد
  • (H-10) 1.4841 Wnr: مقاوم در برابر حرارت تا 1150 درجه سانتی گراد
  • 1.4878 Wnr : خواص مکانیکی خوب، مقاوم در برابر حرارت تا 850 درجه سانتی گراد

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

 


:: برچسب‌ها: استیل 321 , ورق استیل 321 , میلگرد استیل 321 , لوله استیل 321 , تسمه استیل 321 , قوطی استیل ,



ورق استیل 201- استنلس استیل 201- استیل 201
نوشته شده در سه شنبه 12 مهر 1401
بازدید : 205
نویسنده : جواد دلاکان

ورق استیل 201 جایگزینی با هزینه کمتر نسبت به ورق استیل 304 می باشد.

ورق استیل 201

اگر در آلیاژ 304 نیمی از نیکل را حذف کرده و جای آن عناصر آلیاژی منگنز و نیتروژن اضافه شود. استنلس استیل 201 را خواهیم داشت. که نتیجه آن استحکامی بالاتر نسبت به 304 را در بر خواهد داشت. برای جبران نرخ کارسختی عنصر مس نیز به آلیاژ اضافه می گردد. بنابراین استیل 201 نسبت به ورق استیل 304 انعطاف و شکل پذیری کمتری خواهد داشت. با این حال خواص دما پایین آن عالی می باشد.

ورق استیل 201

 

همچنین از لحاظ جوش پذیری فوق العاده است. معمولاً در اکثر گریدهای ورق استیل برای اینکه خواص مقاومت در برابر خوردگی بعد از جوشکاری حفظ شود. عملیات حرارتی آنیل لازم می باشد. که در مورد استنلس استیل 201 و نوع کم کربن آن نیاز به چنین عملیاتی احساس نمی شود. و علت آن حفظ خواص مقاومت در برابر خوردگی بعد از جوشکاری می باشد.

 

شکل پذیری و مقاومت در برابر خوردگی خوب آلیاژ 201. باعث شده که این آلیاژ برای ساخت ادوات فلزی، تجهیزات پخت و پز و تجهیزات آشپزخانه ای نیاز به کشش عمیق دارند، بسیار مناسب باشد. البته استحکام خوب موجب شده که این آلیاژ در ساخت تسمه، بست های فلزی و انواع کابل نیز مناسب می باشد. و ویژگی عالی دما پایین آن سبب شده که برای ساخت مخازن برودتی انتخاب اول سازندگان باشد. این آلیاژ در شرایط آنیل غیر مغناطیسی (نگیر) می باشد. اما با کار سرد ممکن است کمی مغناطیسی (بگیر) شود.

ترکیب شیمیایی ورق استیل 201

ورق استیل 201

آنالیز استاندارد ورق استیل 201

استنلس استیل 201 و 201LN با توجه به استانداردهای زیر آنالیز می شوند.

ASTM A240,A480,A666,A262

SAME SA240,SA480,SA666

خواص مکانیکی ورق استیل 201

مقاومت در برابر اکسیداسیون استنلس استیل 201

حداکثر دمایی که آلیاژهای 201 مقاومت در برابر پوسته پوسته شدن از خود نشان می دهند. متناوب : 750 درجه سانتی گراد

مداوم: 780 درجه سانتی گراد

مقاومت خوردگی ورق استیل 201

اگرچه از لحاظ مقیاسی مقاومت در برابر خوردگی کمتری دارد. اما آلیاژ 201 در اکثر محیط ها می تواند جایگزین مناسبی برای استنلس استیل 301 باشد.

عملیات حرارتی ورق استیل 201

ورق استیل 201 قابلیت سخت شدن با عملیات حرارتی را ندارد. عملیات حرارتی آنیل: گرم کردن تا گستره دمایی 1010 تا 1066 درجه سانتی گراد، سپس سریعاً در آب سرد می شود.

شکل پذیری

آلیاژ 201 قابلیت شکل پذیری با انواع روش های موجود را دارا می باشد. و از لحاظ خمکاری کاملاً مشابه با گرید 301 می باشد.

جوش پذیری

کلاس های آستنیتی استنلس استیل، عموماً جوش پذیری مناسبی با هر دو روش نفوذی و مقاومتی از خود نشان می دهند.

کاربرد

ساخت تجهیزات آشپزخانه، لوازم پخت و پز، صنعت ماشین سازی، نرده و درب و پنجره، واگن، تریلر و غیره

انواع ورق استیل

ورق استیل - ورق استیل چیست؟- فولاد زنگ نزن- فولاد ضد زنگ-مقاطع فولادی-ورق استنلس استیل

در طبقه بندی این محصول، ورق ها بر اساس آلیاژ تقسیم بندی می شوند. استیل ها چند سری دارند. از جمله سری 300 و 400 اما معروف ترین و رایج ترین در بازار سری 300 است. که ضد زنگ می باشد و به انواع مختلفی مانند 304,305,321,316,347 تقسیم می شود. که در بین همه موارد ورق استیل 304 از سایرین پر مصرف تر است.

اما استیل سری 400 بیشتر در زندگی روزمره و وسایل کوچک استفاده می شود. مثلاً استیل 410 در برابر سایش مقاوم است. اما نسبت به خوردگی مقاومت کمی دارد. در استیل 420 می توانیم آن را پولیش کنیم و همین قابلیت باعث می شود که برای کارد و چنگال و قاشق استفاده شود. استیل 430 نیز برای تزئینات و دکوراسیون استفاده می شود. مثلاً برای طراحی های داخلی خودروها و منازل استفاده میشوند. این فلز قابلیت شکل پذیری خوبی دارد. و به خاطر عناصری که در این ورق است قیمت ارزانتری از استیل سری 300 دارد.

 

  • ورق استیل 304
  • استیل 430
  • ورق استیل 420
  • ورق استیل 309
  • استیل 310
  • ورق استیل 316
  • استیل 201
  • ورق استیل رنگی
  • و ورق استیل طرح دار

ابعاد ورق

این محصول در ابعاد مختلفی عرضه می شود. به طور مثال در ابعاد 2*1 و 1.25*2.50 متر، 1.22*2.44 متر,3*1.5 متر و 2*6 متر تولید میشود. تمامی این ابعاد با ضخامت های مختلفی مانند 35 صدم میلی متر تا 20 میلی متر در بازار موجود است. عرض این ورقها به صورت 100 و 125 و 150 سانتی متر تولید و عرضه می شود. البته که ورق های استیل فابریک در دو اندازۀ 200*100 سانتی متر، 250*125 سانتی متر و 122*244 سانتی متر موجود است.

جدول زیر وزن ورق های استیل با ضخامت های مختلف را نشان می دهد. که در محاسبات عددی شما را یاری می نماید.

برای محاسبه وزن ورق های استیل از فرمول زیر می توان آن را به دست آورد.

ورق ورق استیل = طول*عرض*ضخامت*چگالی ورق استیل

چرا ورق استنلس ضد زنگ است؟

در بالا اشاره نمودیم که اگر به استیل ساده کربن عناصری مثل کروم اضافه شود. خاصیت ضد زنگی به آن می دهد. اگر در استیل حداقل 10،5 درصد کروم داشته باشد. این ویژگی را پیدا می کند. علاوه بر آن کروم پس از ترکیب با اکسیژن هوا به اکسید کروم تبدیل می شود. این لایه را با چشم نمی شود دید. اما این عنصر باعث می شود که لایه ای به وجود بیاورد که بین هوا و فلز مانع ایجاد کند. تا استیل محفوظ و سالم بماند.

استیل بگیر و نگیر چیست؟

در بازار دو اصطلاح متداول است. استیل بگیر، به فولاد زنگ نزنی می گویند که خاصیت جذب توسط آهن ربا را داشته باشد. و به فولاد زنگ نزنی که به آهن ربا جذب نشود، استیل نگیر می گویند. فولادهای زنگ نزن که در بازار وجود دارند مانند ورق استیل 304 و 316 است. که کروم و نیکل دارند و همین دو عنصر باعث نگیر بودن استیل می شود. نیکل باعث می شود که ساختار فریتی تشکیل نشود. شاید این نکته برایتان جالب باشد که استیل سری 400 دارای کروم است که خاصیت مغناطیسی فولاد زنگ نزن را حفظ می کند.

آیا ورق های استیل استنلس قابل بازیافت هستند؟

ورق های استیل را می توان با قاطعیت گفت که قابل بازیافت هستند. و میتوان آنها را به صورت 100 درصد بازیافت کرد. می توان استیل های ضایعاتی را در کارگاه و کارخانه ها ذوب کرد. و دوباره قالب گیری شود. بیشتر استیل های موجود در جهان یعنی حدود 65 تا 80 درصد استنلس به روش بازیافت تولید می شود.

 

نامگذاری استیل های 304 و 316 و … چگونه انجام شد؟

اولین بار در دنیا انجمن آهن و فولاد آمریکا ورق ها را دسته بندی کرد. و در این تقسیم بندی برای استنلس استیل گروه و دسته هایی را ایجاد کرد. که مطابق با مشخصات فیزیکی و شیمیایی و خواص و شرایط تولید آنها بود.

استیل 304 دارای 18 درصد کروم و 8 درصد نیکل است. اما استیل 316 علاوه بر کروم و نیکل، مولیبدن نیز دارد. یعنی کروم 16 درصد، نیکل 10 درصد و 2 درصد مولیبدن دارد. مولیبدن مقاوم است و در برابر خوردگی تحمل بالایی دارد. به ویژه در برابر آب شور دریا. به 316 استیل ضد زنگ گرید دریایی هم می گویند. وبرای همین در صنایع کشتی سازی و دریایی از آن استفاده می کنند.

ویژگی های ورق های استیل

این محصول براق، صاف، ضد زنگ و مقاوم به خوردگی است. این محصول به دو صورت رول و شیت در بازار عرضه می شود می توان چند ویژگی مهم آن را به صورت زیر بیان کرد.

  • ورق استیل به صورت براق و مات در بازار وجود دارد.
  • نسوز است
  • ضد اسید است
  • ورق استیل روکش دار است.

تولید کنندگان این محصول

این نوع محصول در کشور ما وارداتی است. در ایران ورق استنلس استیل تولید نمی گردد. تولیدکنندگان آن از دیگر کشورها هستند. از معروفترین تولیدکنندگان این محصول می توان به کشورهایی چون، آلمان، فرانسه، اوکراین، تایوان، کره جنوبی، چین، ژاپن، آفریقای جنوبی و آمریکا اشاره نمود. البته در گذشته این ورق ها از آمریکا، ژاپن و آلمان وارد می شد. که امروزه بیشتر از چین، تایوان، کره جنوبی و آفریقای جنوبی است. و درصد چین بیش از همه کشورهاست. اگرچه کیفیت تایوان و کره جنوبی مناسب و خوب برآورد میشود.

قیمت ورق استیل

قیمتگذاری برای این محصول به معیارهای مختلفی وابسته است. و با توجه به شرایط اقتصادی و بالا و پایین شدن نرخ ارز نوسانات آن نیز متفاوت است.

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

tps://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: ورق استیل 201, استنلس استیل 201, استیل 201 ,



بازدید : 201
نویسنده : جواد دلاکان

فولاد 1181- carbon cast steels -فولاد عملیات حرارت پذیر کربنی – فولاد غیر آلیاژی با قابلیت عملیات حرارتی دارای سختی پذیری متوسط. و شکل پذیری عالی و همچنین ماشین کاری خیلی خوب

فولاد 1181

فولاد 1181-میلگرد 1181-تسمه 1181-فولاد ck45-میلگرد ck35-گرد ck35-فولاد کربنی

نام های دیگر: ۱۵۵۰- W6W – R3 – V935 – S1181 – C35 – S35C – ۱۰۳۵ – ۰۶۰A35 – ۳۵

دمای پیش گرم:150 الی 200 درجه سانتیگراد

الکترود جوشکاری:Ok78.16- E9018-G

Heat Treatment °C

Forging: 850-1100

Annealing: 650-700

Hardening: 840-870*850-880

Quenching: water-oil

فولاد ck35 یا همان 1181 فولاد با خلوص بالا برای ساخت و اجزاء تحت تنش اندکی بالاتر از خودروها.مهندسی مکانیک، ساخت موتور، خودرو، قطعات ماشین سازی، محور قطار و ساخت پیچ و مهره ها. مقاوم در دمای بالا برده شده تا حداکثر 400 درجه سانتی گراد به کار می رود.

خصوصیت: فولاد غیر آلیاژی با قابلیت عملیات حرارتی دارای سختی پذیری متوسط و شکل پذیری عالی و همچنین ماشین کاری خیلی خوب

کاربرد: قابل استفاده در اجزاء سازه ای در صنایع ماشین سازی، قابل استفاده در قطعات موتور

فولاد کربنی چیست؟ و فولاد کم آلیاژ-فولاد آلیاژی

که فولاد کربنی، نوعی فولاد است که حداکثر درصد وزنی کربن ان 2.1% است. طبق تعریف مؤسسه آهن و فولاد آمریکا، AISI، زمانی به فولاد را فولاد کربنی می گویند که:

  • هیچ حداقل مقداری برای عناصر کروم، کبالت، مولیبدن، نیکل، نیوبیوم، تیتانیوم، تنگستن، وانادیوم، زیرکونیم مشخص نشده باشد.
  • حداقل میزان مس مشخص از 0.4 درصد جرمی بیشتر نباشد.
  • یا حداکثر درصد جرمی عناصر مورد بیان از این مقادیر بیشتر نباشد. منگنز 1.65 درصد، سیلیکن 0.6 درصد، مس 0.6 درصد.

ممکن است از واژه (فولاد کربنی) برای تفکیک قائل شدن با (فولاد زنگ نزن) استفاده گردد. در این حالت منظور از فولاد کربنی می تواند شامل فولادهای آلیاژی نیز شود.

با افزایش درصد کربن در فولادها، امکان سختکاری و افزایش استحکام آن نیز از طریق عملیات حرارتی افزایش می یابد. ولی از طرفی این کار باعث کاهش شکل پذیری آن می شود. جدای از عملیات حرارتی، افزایش درصد کربن باعث کاهش خاصیت جوشکاری فولادها می شود. در فولادهای کربنی هر چه درصد کربن افزایش یابد، دمای ذوب فولاد کاهش می یابد.

بررسی ریزساختار و خواص مکانیکی اتصال جوشکاری اصطکاکی فولاد ck35 به فولاد 18CrMo4

قطعات ماشین آلات به کمک روش های مختلف نظیر فروجینگ، ماشین کاری، ریخته گری و جوشکاری تولید می شوند. انتخاب روش های تولید وابسته به هزینه تولید است. در این بین جوشکاری اصطکاکی با توجه به هزینه های پایین تولید و امکان اتصال قطعات از جنس غیر مشابه اهمیت فراوانی پیدا کرده است. در این تحقیق ریزساختار و خواص مکانیکی جوش اصطکاکی بین دو فولاد غیر مشابه ck35 (فولاد 1181) و 18CrMo4 مورد ارزیابی قرار می گیرد.

بدین منظور از آزمون های مکانیکی نظیر کشش، خمش و سختی. و بررسی های ریزساختاری به کمک میکروسکوپ الکترونی روبشی و میکروسکوپ نوری کمک گرفته شد. نتایج نشان داد بالاترین استحکام کششی (576 مگاپاسکال). و حداکثر زاویه خمش (30 درجه) در زمان اصطکاک 13 ثانیه و زمان فورج 3 ثانیه بدست می آید. بررسی های ریزساختاری حاکی از حضور نواحی فلز پایه، ناحیه متأثر از حرارت و ناحیه ترمومکانیکال در دو طرف ناحیه جوش اصطکاکی است. همچنین بالاترین سختی در ناحیه جوش بدست می آید.

 

جوشکاری اصطکاکی یکی از روش های اقتصادی و پر مصرف در اتصال فلزات و آلیاژهای غیر همجنس در صنعت است. در این روش جوشکاری، گرما از طریق تبدیل انرژی مکانیکی به انرژی حرارتی در فصل مشترک اتصال در قطعه کار. در اثر چرخش با سرعت بالا و اعمال فشار بوجود می آید. از مزایای جوشکاری اصطکاکی می توان به زمان تولید بسیار کم. صرفه جویی بالا از طریق مواد مصرفی پایین و امکان جوشکاری فلزات و آلیاژهای غیر همجنس اشاره نمود. از پارامترهای مؤثر بر جوشکاری اصطکاکی می توان به زمان اصطکاک. فشار در هنگام اصطکاک دو قطعه، زمان و فشار فورجینگ و سرعت چرخش اشاره نمود. فاکتورهای مورد بیان در بالا برای رسیدن به یک اتصال با خواص مناسب بایستی تحت کنترل درآیند.

در این روش در مرحله فورج مقداری زائده ایجاد می شود که بایستی در مرحله ماشین کاری حذف شود. فرآیند جوشکاری اصطکاکی به دو دسته تقسیم می شود. 1- جوشکاری اصطکاکی لحظه ای و 2-جوشکاری اصطکاکی مداوم در جوشکاری اصطکاکی مداوم. یکی از اجزاء در حال چرخش با سرعت ثابت و دیگری ثابت است و بنابراین حرارت در سطوح تحت اصطکاک بوجود می آید. هنگامی که حرارت کافی ایجاد گردید، حرکت دورانی با ترمز متوقف می شود و فشار نهایی اعمال می شود.

 

تحقیقات زیادی در مورد جوشکاری اصطکاکی انجام پذیرفت. بعنوان مثال Dobrovidov شرایط بهینه در جوشکاری اصطکاکی فولاد تندبر را به فولاد ساده کربنی با 0.45 درصد کربن را بررسی نمود. در تحقیق دیگری که توسط Sahin بر روی جوشکاری اصطکاکی قطعات از جنس فولاد ck40 انجام پذیرفت، مشاهده گردید. استحکام کششی در ناحیه جوش در حدود 90 درصد فلز پایه می باشد. همچنین استحکام ضربه در ناحیه جوش کمی بالاتر از فلز پایه می باشد.

در تحقیق دیگری همین محقق پارامترهای مؤثر بر جوشکاری اصطکاکی فولاد تندبر را به فولاد ساده کربنی بررسی نمود. نتایج این تحقیق نشان داد بالاترین استحکام کششی در زمان اصطکاک 3.7 ثانیه و فشار اصطکاک 600 مگاپاسکال بدست می آید. در تحقیق دیگری که توسط Satyanarayana بر روی جوشکاری اصطکاکی غیر همجنس فولاد زنگ نزن آستنیتی به فولاد زنگ نزن فریتی انجام پذیرفت. مشاهده گردید انرژی ضربه و خواص استحکامی در ناحیه جوش در مقایسه با فلز پایه (فولاد زنگ نزن فریتی) بهبود یافت. و در داخل کشور تحقیقات بسیار کمی در مورد جوشکاری اصطکاکی انجام پذیرفت. در تحقیق حاضر جوشکاری اصطکاکی فولاد کم آلیاژ کروم، مولیبدن وانادیوم دار به فولاد ساده کربنی Ck35 (فولاد 1181). که در تهیه محور فرمان نیسان کاربرد دارد بررسی گردیده. و شرایط بهینه در تولید این قطعه نظیر زمان اصطکاک و زمان فورج مشخص می گردد.

مواد و روش تحقیق

ترکیب شیمیایی فولادهای مورد مصرف در تحقیق شامل 18CrMo4 و Ck35 به ترتیب در جدول (1) و (2) مشخص است. در این تحقیق پارامترهای فشار فورج اولیه، فشار فورج ثانویه. و سرعت چرخش بترتیب برابر با 25 بار. 45 بار و 1500 دور بر دقیقه مد نظر قرار گرفت. عملیات جوشکاری اصطکاکی در دو زمان فورج 3 و 5 ثانیه و زمان های اصطکاک 8،11،16،13،17،19 ثانیه انجام گردید.

برای بررسی خواص مکانیکی ناحیه جوش اصطکاکی از آزمون های کشش مطابق بااستاندارد EN10002-1 (توسط دستگاه ZIM مدل YMM). سختی (توسط دستگاه کوپا مدل MH1 و نیروی 5 کیلو گرم) و خمش مطابق با استاندارد ENISO15620 استفاده گردید. نحوه انجام آزمون خمش بر روی نمونه های محور فرمان نیسان تولیدی به روش جوشکاری اصطکاکی در شکل (1) نمایان است.

برای بررسی ریزساختار ناحیه جوش،نمونه ها پس از (اچ) در محول نایتال 4% توسط میکروسکوپ نوری Olympus مدل PGM3. و میکروسکوپ الکترونی روبشی (SEM) ساخت شرکت JEO1 استفاده گردید. همچنین برای بررسی نمونه هادر حالکت ماکرو از محلول (اچ) با ترکیب کلرور مس (20 گرم). و اسید کلریدریک (100 گرم) و آب (100 گرم) استفاده گردید.

 

فولاد 1181
فولاد 1181

نتایج و بحث

در شکل (2) و (3) ارتباط بین زمان اصطکاک و استحکام کششی در زمان فورج 3 و 5 ثانیه نمایان است. همانطوریکه مشاهده می گردد. در زمان فورج 3 ثانیه و زمان اصطکاک 13 ثانیه بالاترین استحکام کششی (Mpa 570) حاصل گردید. دلیل این مسئله در ارتباط با آن است. که در زمان های اصطکاک کم حرارت تولیدی بسیار کم است. و بنابراین منجر به جوش با استحکام بالا نمی شود.

همچنین در زمان های اصطکاک یا فورج بالاتر، دمای ناحیه جوش افزایش یافت. و بنابراین پهنای ناحیه متأثر از حرارت افزایش می یابد (همراه با درشت شدن دانه ها) و بنابراین استحکام کاهش می یابد. بنابراین بالاترین استحکام کششی (570Mpa) مربوط به زمان اصطکاک 13ثانیه و زمان فورج 3 ثانیه است. که منجر به دمای 930 درجه سانتی گراد در لحظه فورج می شود. نتایج بالا توسط محققین دیگر و در مورد آلیاژهای دیگر مورد اثبات قرار دارد. بررسی نتایج حاصل از آزمون خمش بیانگر بالاترین زاویه خمش در لحظه شکست (30 درجه). برای نمونه با زمان اصطکاک 13 ثانیه و زمان فورج 3 ثانیه می باشد. بررسی های ریزساختاری حاکی از حضور سه ناحیه فلز پایه، ناحیه متأثر از حرارت و ناحیه ترمومکانیکال در دو طرف ناحیه جوش است. (شکل 4 و 5) از بررسی این مناطق (با توجه به شکل 4 و 5)، نتایج زیر حاصل می شود:

 

1- ساختار فلز پایه : در فولاد ساده کربنی شامل فریت و پرلیت و در فولاد کم آلیاژ مارتنزیت تمپر هستند.

2- ساختار ناحیه متأثر از حرارت: وسعت این ناحیه بسیار کم و دارای ساختاری درشت دانه تر در مقایسه با فلز پایه است.

3- ساختار ناحیه ترمومکانیکال: ساختار این ناحیه بدلیل تغییر فرم پلاستیک، ریزدانه تر و ظریف تر می باشد.

4- ناحیه جوش: وسعت این ناحیه بسیار کم می باشد. دلیل این مسئله آن است که در اثر جوشکاری قسمت زیادی از این ناحیه به بیرون پس زده می شود. و زائده جوش را تشکیل می دهد (شکل 6). همچنین اندازه زائده جوش در طرف ck35، 3.1 میلی متر و در طرف 18CrM04، 2.9 میلی متر است. که با توجه به کمتر بودن استحکام کششی فولاد ck35 در مقایسه با فولاد 18CrMo4 قابل توجیه است.

فولاد 1181

 

فولاد 1181

شکل (4) : ریزساختار نواحی مختلف جوش اصطکاکی دو فولاد 18CrMo4 و Ck35 در نمونه با زمان فورج 3 ثانیه و زمان اصطکاک 13 ثانیه.

فولاد 1181

شکل (5): ریزساختار تهیه شده توسط میکروسکوپ الکترونی روبشی. از نواحی مختلف جوش اصطکاکی دو فولاد 18CrMo و Ck35 در نمونه با زمان فورج 3 ثانیه و زمان اصطکاک 13 ثانیه.

نتایج حاصل از بررسی سختی نمونه ها در جدول (3) نمایان است. همانطوریکه مشاهده می گردد سختی در نواحی متأثر از حرارت و ناحیه ترمومکانیکال در مقایسه با فلز پایه کاهش یافته است. همچنین بالاترین سختی در ناحیه جوش حاصل گردید. دلیل این مسئله در ارتباط با ریز شدن دانه ها و تأثیر عملیات فورج در این ناحیه می باشد.

فولاد 1181

فولاد 1181

نتیجه گیری

در تحقیق حاضر اتصال از طریق جوشکاری اصطکاکی فولاد ck35 به فولاد 18CrMo4. که در ساخت محور فرمان نیسان کاربرد دارد انجام پذیرفته و نتایج زیر حاصل گردید.

1- بالاترین استحکام کششی (576 مگاپاسکال) و حداکثر زاویه خمش (30 درجه). در زمان اصطکاک 13 ثانیه و زمان فورج 3 ثانیه بدست آمد. که با توجه به استحکام کششی فولاد ck35 در حالت آنیل شده (650 مگاپاسکال). استحکام کششی ناحیه جوش 0/88 فلز پایه است.

2- بالاترین سختی در ناحیه جوش بدست می آید که با توجه به تأثیر عملیات فورج بر ریز شدن دانه ها قابل توجیه است.

3-بررسی های ریزساختاری حضور نواحی فلز پایه، ناحیه متأثر از حرارت و ناحیه ترمومکانیکال را در دو طرف ناحیه جوش اصطکاکی تأیید می نماید.

4- با توجه به کمتر بودن استحکام کششی فولاد ck35 در مقایسه با فولاد 18CrMo4. تغییر فرم بیشتری در آن رخ داده و بنابراین اندازه زائده جوش در طرف ck35 بزرگتر است.

 

کامران امینی-علی فاتحی، علی بروجردی

دانشگاه آزاد اسلامی، واحد شهرمجلسی-شرکت فرمان خودرو سپاهان اصفهان-شرکت آزمونه فولاد اصفهان

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد 1181,میلگرد 1181,تسمه 1181,فولاد CK35,میلگرد CK35,گرد CK35,فولاد کربنی, ,



بازدید : 200
نویسنده : جواد دلاکان

بررسی خواص فولاد Crofer 22APU پوشش داده شده با Co/y2O3 به روش آبکاری الکتریکی با جریان مستقیم

فولاد Crofer 22apu

فولاد زنگ نزن فریتی Crofer 22 APU به عنوان ماده ای مناسب. برای ساخت اتصال دهنده در پیل های سوختی اکسید جامد مورد استفاده قرار می گیرد. از مشکلات مهم این فولاد، افزایش مقاومت الکتریکی و تبخیر کروم از آن در دمای بالاست. به منظور رفع این مشکلات می توان از یک لایه پوشش محافظ روی آن استفاده کرد. در این پژوهش، از پوشش کامپوزیتی کبالت/اکسید ایتریم متشکل به روش آبکاری الکتریکی استفاده شد. سپس مقاومت به اکسیداسیون و مقاومت الکتریکی نمونه های پوشش دار و بدون پوشش مورد بررسی قرار گرفت.

 

به منظور بررسی اثر اکسیداسیون روی ریزساختار و ترکیب نمونه ها، از آنالیزهای میکروسکوپی الکترونی روبشی و پراش پرتو ایکس استفاده شد. نتایج نشان داد نرخ اکسیداسیون نمونه بدون پوشش پس از 500 ساعت اکسیداسیون در هوا. در 800 درجه سانتیگراد حدود چهار برابر نرخ اکسیداسیون نمونه پوشش دهی گردید. تشکیل ترکیبات اسپینلی Co3O4 و MnCo2O4 روی نمونه پوشش دار هدایت الکتریکی را بهبود داد. مقدار مقاومت ویژه سطحی نمونه پوشش دار و بدون پوشش بعد از 500 ساعت اکسیداسیون. به ترتیب برابر 15/8 و 25/9 میلی اهم بر سانتی متر مربع اندازه گیری شد.

فولاد Crofer 22apu

مقدمه

پیل سوختی اکسید جامد (SOFC) یک وسیله تبدیل انرژی است. که از طریق ترکیب الکتروشیمیایی یک سوخت و یک اکسیدان در امتداد یک الکترولیت اکسیدی هدایت کننده یونی، تولید الکتریسیته و گرما می کند. در کاربردهای عملی SOFC، تعداد زیادی از سلول های واحد نسبتاً کوچک به یکدیگر متصل می شوند. تا جریان الکتریسیته لازم را فراهم کنند. پیل های منفرد توسط یک جزء سازنده به نام اتصال دهنده بین سلولی به یکدیگر متصل می شوند. تا یک بدنه واحد را تشکیل دهند.

 

این اجزاء علاوه بر اتصال الکتریکی، به صورت یک سد فیزیکی مانع از هر گونه تماس بین اتمسفرهای احیایی و اکسیدی می شوند. اتصال دهنده ها باید دارای هدایت الکتریکی خوب. نفوذ ناپذیری عالی، انطباق ضریب انبساط حرارتی با الکترودها و الکترولیت. مقاومت به اکسیداسیون خوب، قیمت پایین و در عین حال شکل دهی و ساخت آسان باشند. با کاهش دمای کاری سیستم SOFC به 800 -600 درجه سانتی گراد مواد فلزی به عنوان مواد مناسبی برای ساخت اتصال دهنده مطرح شدند.

 

فولاد زنگ نزن فریتی از بیشترین پتانسیل برای کاربرد به عنوان مواد اتصال دهنده در SOFC برخوردارند. در بین فولادهای زنگ نزن فریتی، Crofer 22APU به دلیل تشکیل SOFC روی اکسید کروم. از ضخیم شدن پوسته اکسید کروم جلوگیری کرده و باعث بهبود خواص مانند افزایش مقاومت به اکسیداسیون و هدایت الکتریکی فولاد می شود. با وجود این، لایه اکسید اسپینل منگنز- کروم از رشد لایه اکسید کروم بطور کامل جلوگیری نخواهد کرد.

 

این امر باعث ایجاد دو مشکل مهم در سیستم SOFC می شود. 1-افزایش مقاومت الکتریکی 2-مهاجرت اجزای کروم دار اتصال دهنده از طریق لایه اکسیدی به سمت کاتد. که می تواند باعث تخریب کاتد و نیز کاهش میزان کروم آلیاژ اتصال دهنده شود. که هر دو این عوامل می توانند روی عملکرد پیل تأثیر منفی داشته باشند. به همین دلیل لازم است که از یک پوشش محافظ های استفاده شود.

 

پوشش های مورد استفاده برای اتصال دهنده های بین سلولی در SOFC به سه گروه عمده تقسیم می شوند. پوشش های اکسید اسپینل مانند 3O4(CoMn)، 3O4(Mn،Cr) و 3O4(Mn,Cu)، پوششهای پیروسکایت مانند MnO3(La,Sr)، C0O3(La,Sr) و CrO3(La,Sr) و پوشش های اکسید عناصر راکتیو. عناصر راکتیو شامل عناصری از قبیل هافنیم (Hf)، زیرکونیوم (Zr)، ایتریم (Y) و لانتانیم (La) هستند. که قابلیت بسیار بالایی برای ترکیب شدن با اکسیژن و تشکیل اکسید دارند. پیوند این عناصر با اکسیژن بسیار قوی است.

 

در بین پوشش های اعمالی روی اتصال دهنده های فلزی، کبالت که در دماهای بالا به اکسیدهای اسپینل آن تبدیل می شود. به عنوان یکی از قابل قبول ترین پوشش ها معروف است. با وجود این دستیابی به یک پوشش مؤثرتر با یک روش مناسب روی این اتصال دهنده ها. برای دستیابی به مقاومت به اکسیداسیون بالاتر و هدایت الکتریکی بهتر در مقایسه با اسپینل های کبالت ضروری است. یک روش مؤثر برای اعمال پوششی مطلوب تر، ترکیب اسپینل های کبالت با عناصر راکتیو در یک پوشش است. این روش در تحقیقات سایر محققین نتایج مطلوبی داشته است.

 

فولاد Crofer 22apu

فولاد Crofer 22apu

اکسید عناصر راکتیو نفوذ سربالایی کروم را آهسته کرده و چسبندگی پوسته اکسید کروم را افزایش می دهند. اما تبخیر اجزای کروم دار را کاهش نمی دهند. از طرفی اکسیدهای اسپینلی می توانند مقاومت الکتریکی و نیز تبخیر کروم را به طور موفقیت آمیزی کاهش دهند. روش های مختلفی برای رسوب کبالت روی اتصال دهنده های داخلی در سیستم SOFC مورد استفاده قرار گرفته است. در بین این روش ها آبکاری الکتریکی یک روش پوشش دهی ساده و ارزان است. یک مزیت مهم این روش فراگیر بودن آن است. به طور مثال با این روش می توان ذرات فاز ثانویه غیرهادی را به یک زمینه فلزی به صورت یک پوشش یکنواخت پیوند داد.

فولاد Crofer 22apu

2-مواد و روش تحقیق

در این تحقیق از فولاد زنگ نزن فریتی Crofer 22 APU ترکیب شیمیایی آن در جدول (1) آورده شده است. عنوان زیر لایه برای پوشش دهی به روش آبکاری الکتریکی با جریان مستقیم استفاده شد. از این فولاد قطعاتی به ابعاد 10×10×2 میلی متر تهیه شد. نمونه با کاغذ سنباده SiC تا شماره 2500 پولیش و در استون با دستگاه آلتراسونیک چربی گیری شدند. برای بالا بردن اکتیویته سطح و چسبندگی پوشش، نمونه ها به مدت دو دقیقه. در محلولی شامل پنج درصد وزنی اسید نیتریک و 25 درصد وزنی اسید کلریدریک قرار گرفتند.

 

سپس نمونه ها در الکترولیتی حاوی 90 گرم بر لیتر CoCl2.6H2O و 90 میلی لیتر بر لیتر HCl 37% آبکاری شدند. تا لایه نازکی از کبالت روی سطح نمونه ها تشکیل شود. این عملیات، لایه اکسید متشکل بر سطح فولاد را از بین می برد و باعث بهبود چسبندگی پوشش به سطح فولاد می شود. این نمونه ها به عنوان کاتد در نظر گیری شد. و از یک قطعه کبالت خاصل به ابعاد 5×20×20 میلی متر نیز به عنوان آند استفاده شد.

 

پوشش کامپوزیتی به وسیله دستگاه پتانسیواستات Sama500. با چگالی جریان 20 میلی آمپر، زمان 15 دقیقه و دمای 45 درجه سانتی گراد روی اتصال دهنده فولادی رسوب می دهند. فرآیند آبکاری در محلول واتس کبالت با ترکیب بهینه انجام شد. سوب دهی کبالت به روش آبکاری الکتریکی روی زیر لایه های مختلف و با استفاده از حمام های آبکاری متفاوتی انجام می شود. از جمله محلول هایی که برای آبکاری کبالت استفاده می شود. از جمله محلول هایی که برای آبکاری کبالت استفاده می شود.

 

می توان به محلول سیترات، محلول شامل تری اتیلین دی آمین و کلرید کبالت در 100 درصد هیدروکسید پتاسیم. محلول تیوسیانات کبالت دی دی متیل فرم آمید. کبالت در محلول آبی کلرید آمونیوم و محلول الکترولیت گلوکونات اشاره کرد. یکی از اولین محلول ها که برای رسوب دهی کبالت بکاری گیر شد.

توسط شخصی به نام واتس با ترکیب شیمیایی شامل: سولفات کبالت به عنوان ماده اصلی که حاوی یون های کبالت است. کلرید کبالت برای کمک به انحلال آند، کلرید سدیم برای بهبود هدایت یونی و اسید بیوریک به عنوان تنظیم کننده Ph است. این محلول برای آبکاری کبالت روی زیر لایه های فولادی استفاده می شود. و به حمام واتس کبالت معروف است. در جدول (2) ترکیب شیمیایی حمام آبکاری و شرایط عملکرد فرایند آبکاری نمایان و مشخص است. همه آزمایش ها در 100 میلی لیتر الکترولیت که با آب دیونیزه مهیا گردید، انجام شد. به منظور کنترل Ph از اسید سولفوریک و هیدروکسید آمونیوم استفاده شد.

 

بعد از آبکاری، نمونه های پوشش دار و بدون پوشش. به مدت 500 ساعت در دمای 800 درجه سانتی گراد تحت اکسیداسیون همدما و هوای ساکن قرار گرفتند. وزن نمونه ها قبل و بعد از آزمون توسط ترازوی دیجیتال با دقت 6-10 گرم اندازه گیری شد. برای اطمینان از نتایج، آزمون اکسیداسیون همزمان روی سه نمونه مشابه انجام شد. برای بررسی مورفولوژی سطح نمونه ها و ضخامت پوشش و لایه های اکسیدی از میکروسکوپ الکترونی روبشی (SEM). و برای بررسی فازهای تشکیل شده در پوشش بعد از اکسیداسیون از الگوی پراش پرتو ایکس (XRD) استفاده شد.

 

آزمون چسبندگی به روش کراس کات برای تعیین میزان چسبندگی پوشش Co/Y2/O3 به زیر لایه فولادی انجام شد. این آزمون که روشی ساده و عملی برای ارزیابی چسبندگی سیستم های پوشش دهی تک و چند لایه است. طبق استاندارد ASTM D3359 (2017) صورت گرفت. ابتدا با ابزار برشی مناسب طرحی مشبک روی لایه پوششی تا رسیدن به زیر لایه ایجاد شد. و با برس در جهت قطری پنچ مرتبه روی برش های برش چسبانده و از روی سطح جدا شد. در نهایت ناحیه برش خورده با ذره بین نورانی تحت بررسی قرار گرفت.

فولاد Crofer 22apu

 

برای اندازه گیری مقاومت الکتریکی ویژه سطحی (ASR) نمونه های پوشش دار و بدون پوشش. از سیستمی استفاده شد که شماتیک آن در شکل (1) نمایان و کاملاً مشخص می باشد. برای این آزمون، خمیز و مش نقره محصول شرکت Full Cell materials آمریکا. به مساحت یک سانتی متر مربع روی نمونه های پوشش دار و نمونه های بدون پوشش قرار داده شد. سپس نمونه ها توسط این خمیر و مش نقره به سیم هایی از جنس نقره متصل شدند. که این سیم ها نقش اتصال دهنده نمونه به دستگاه اتولب را بازی می کردند. نمونه ها پس از مهیا سازی سطح و اتصال به سیم ها در یک کوره الکتریکی قرارگیری شدند.

 

و سر دیگر سیم های متصل به نمونه ها به دستگاه اتولب مدل Autolab Pgstat 302 متصل شد. از نرم افزار Nova 1.6 برای اجرای برنامه کرونوپتانسیو متری استفاده شد. در این برنامه جریان ثابت است. برای انجام این آزمون از جریان ثابت 500 میلی آمپر استفاده شد. خروجی اتولب که توسط نرم افزار ثبت می شود. ولتاژ است. با داشتن ولتاژ و جریان، مقدار مقاومتبه وسیله قانون اهم (V/I) محاسبه شد. بدین ترتیب با داشتن سطح نمونه ها و مقدار مقاومت اهمی، مقدار مقاومت الکتریکی سطحی محاسبه شد. اندازه گیری مقاومت الکتریکی سطحی بر حسب دما (800-650 درجه سانتی گراد). و زمان (200 ساعت در دمای 800 درجه سانتی گراد) در هوای ساکن در کوره الکتریکی انجام شد.

فولاد Crofer 22apu

فولاد Crofer 22apu

3-نتایج و بحث

1-3- بررسی ریزساختار و ترکیب پوشش

شکل (2) تصویر میکروسکوپی الکترونی روبشی (شکل2-الف). و تحلیل طیف سنجی پراکندگی انرژی پرتو ایکس (EDS) (شکل 2-ب) پوشش ایجادی بر روی زیر لایه فولادی را نشان می دهد. همان گونه که در شکل (الف) مشاهده می شود. ذرات اکسید ایتریم به صورت یکنواخت و همگن در زمینه کبالت دچار پراکندگی شدند. پوشش اعمالی به طور کامل متراکم است و هیچگونه تخلخل و حفره ای در مقیاس بزرگ در آن نمایان و مشخص نیست.

 

تصاویر میکروسکوپ الکترونی روبشی از سطح نمونه های پوشش داده شده. توسط نرم افزار آنالیز تصویر ImageJ مورد بررسی قرار گرفت. و میانگین اندازه ذرات تقویت کننده در سطح پوشش 2/25 میکرومتر تعیین شد. میانگین اندازه ذرات تقویت کننده تقریباً 1/5 میکرومتر است. (شکل 3) که حاکی از اگلومره شدن ذرات Y2O3 در طی فرآیند آبکاری الکتریکی است.

 

شکل (4) تصویر میکروسکوپی الکترونی روبشی (شکل 4- الف). و تحلیل طیف سنجی پراکندگی انرژی پرتو ایکس (شکل4-ب) از مقطع عرضی نمونه مورد پوشش با کامپوزیت Co/Y2O3 را نشان می دهد. پوشش ایجادی چسبندگی کاملی به زیر لایه داشت و هیچ گونه تخلخل و جدایشی بین پوشش و زیر لایه مشاهده نمی شود. ضخامت پوشش متشکل روی تمام سطح زیر لایه فولادی تقریباً یکنواخت و برابر هفت میکرومتر تعیین شد.

2-3- چسبندگی پوشش به زیر لایه

شکل (5) نتایج آزمون چسبندگی به روش کراس کات را نشان می دهد.

فولاد Crofer 22apu
فولاد Crofer 22apu

نمایش تصویر سطح نمونه پوششی با Co/Y2O3 پس از این آزمون حاکی از آن است. که چسبندگی این پوشش بر اساس رده بندی استاندارد در کلاس 3B قرار دارد. یعنی پوشش در امتداد لبه ها و یا در محل های تقاطع برش های جدا گردید.

فولاد Crofer 22apu

فولاد Crofer 22apu

و ناحیه جدا شده بیشتر از 5 درصد و کمتر از 15 درصد است. طبق استاندارد، این نتیجه به معنای این است که پوشش اعمالی چسبندگی مناسبی به زیر لایه فولادی دارد.

3-3- سینیتیک اکسیداسیون

به منظور مقایسه رفتار اکسیداسیون نمونه دارای پوشش و نمونه بدون پوشش. تغییرات وزن بر واحد سطح نمونه ها به عنوان تابعی از زمان اکسیداسیون اندازه گیری شد. هرچند استفاده از تغییر وزن برای تعیین مقاومت به اکسیداسیون آلیاژهای کروم دار در دماهای بالا. به دلیل تبخیر کروم، مقداری خطا را در تفسیر نتایج نشان می دهد. اما این نتایج بیشتر برای مقایسه رفتار اکسیداسیون نمونه ها استفاده می شوند. شکل (6-الف) تغییرات وزن ویژه و شکل (6-ب) مربع تغییرات وزن ویژه بر حسب زمان اکسیداسیون در 800 درجه سانتیگراد را نشان می دهد. بعد از 500 ساعت اکسیداسیون نمونه دارای پوشش تغییر وزنی برابر 0.45 میلی گرم. و نمونه بدون پوشش تغییر وزنی برابر 0.41 میلی گرم را از خود نشان می دهد.

 

با توجه به شکل (6-ب) می توان نتیجه گرفت که رفتار اکسیداسیونی این آلیاژ، هم به صورت پوشش دار. و هم به صورت بدون پوشش، با توجه به رابطه (1) از قانون سینیتیک پارابولیک پیروی می کند. زیرا بر طبق تئوری واگنر اگر نمودار مربع تغییرات وزن بر حسب دما یک خط راست باشد. نفوذ عناصر در لایه اکسیدی و یا پوشش، آهسته ترین فرایندی که نرخ اکسیداسیون را کنترل می کند. و تغییر وزن ماده مورد نظر از قانون پارابولیک تبعیت می کند.

 

که در آن δm تغییر وزن نمونه ها، A مساحت سطح نمونه ها، Kp ثابت نرخ پارابولیک،t زمان و C ثابت انتگرال است. که شروع سینیتیک پارابولیک را نشان می دهد. در اینجا دلیل رفتار پارابولیک نمونه های بدون پوشش و نمونه های دارای پوشش این است. که رشد لایه اکسید کروم متشکل روی نمونه ها از قانون پارابولیک تبعیت می کند.

مقادیر ثابت اکسیداسیون نمونه بدون پوشش از صفر تا 60 ساعت اکسیداسیون. برابر 5×13-10=Kp و از 50 تا 500 ساعت اکسیداسیون برابر 3×13-10=Kp است. نرخ اکسیداسیون بالاتر اولیه مربوطه به تشکیل پوسته اکسید کروم روی فولاد است. و پس از 50 ساعت اکسیداسیون با تشکیل پوسته اکسیدی نرخ اکسیداسیون کاهش می یابد. نرخ اکسیداسیون نمونه دارای پوشش هم در 100 ساعت ابتدایی اکسیداسیون بالاست (3×13-16=Kp).

 

دلیل این امر اکسیداسیون سریع کبالت است. که منجر به تشکیل اکسیدهای اسپینلی کبالت می شود. دلیل دیگری که می توان برای افزایش وزن بالای اولیه نمونه دارای پوشش با Co/Y2O3 (100 ساعت ابتدایی آزمون اکسیداسیون) ذکر کرد. اکسیداسیون همزمان پوشش و زیر لایه است. بعد این افزایش وزن سریع اولیه، مقدار افزایش وزن این نمونه با زمان اکسیداسیون به شدت کاهش می یابد. که دلیل این امر ایجاد یک لایه محافظ اکسیدی طی 100 ساعت ابتدایی فرآیند اکسیداسیون است.

 

با مقایسه زمان لازم برای تشکیل لایه محافظ اکسیدی در اثر اکسیداسیون پوشش اعمالی Co/Y2O3. با زمان لازم برای تشکیل لایه محافظ اکسیدی در پوشش هایی مانند MnCu و Ni-Co-Fe در شرایط کاری مشابه می توان گفت. سرعت تشکیل لایه اکسیدی در این پوشش بسیار بالاتر بوده و در کاهش نرخ اکسیداسیون نیز اثر بخشی بیشتری داشته است. کاهش نرخ اکسیداسیون پس از تشکیل این لایه اکسیدی محافظ نشان دهنده این است. که نفوذ اکسیژن به فصل مشترک فولاد و زیر لایه نیز به تأخیر افتاده است. که این در توافق با کار سایر پژوهشگران است.

فولاد Crofer 22apu

پس از 100 ساعت اکسیداسیون نرخ اکسیداسیون نمونه پوشش داده شده به شدت کاهش می یابد (8×14-10=Kp). این کاهش نرخ اکسیداسیون ناشی از تشکیل اکسید کبالت است. نرخ اکسیداسیون پایین، برای زمان های طولانی اکسیداسیون بسیار مهم است. زیرا نشان دهنده کاهش رشد لایه اکسید کروم است که مقاومت الکتریکی بالایی دارد. به طور کلی می توان گفت که محصول اکسیداسیون پوشش کبالت، نرخ رشد لایه اکسید کروم را کاهش داده است.

 

اکسید عناصر راکتیو سدهای مناسبی برای جلوگیری از تبخیر کروم نیستند. زیرا به طور معمول متخلخل و نازک هستند. بنابراین این اکسیدها نمی توانند عامل مناسبی برای جلوگیری از مسمومیت کاتد در سیستم های SOFC شوند. با وجود این حضور اکسید ایتریم در پوشش کبالت می تواند باعث افزایش چسبندگی پوشش به زیر لایه و نیز کاهش نرخ اکسیداسیون. و مقاومت الکتریکی سطحی نمونه پوشش داده شده در مقایسه با نمونه بدون پوشش شود.

 

4-3- ریزساختار و ترکیب شیمیایی نمونه های پس از اکسیداسیون بدون پوشش را پس از اکسیداسیون نشان می دهد.

فولاد Crofer 22apu

شکل (7) تصویر میکروسکوپی الکترونی روبشی از سطح نمونه

فولاد Crofer 22apu

سطح نمونه بدون پوشش پس از 500 ساعت اکسیداسیون در هوا در 800 درجه سانتی گراد شامل یک لایه سیاه اکسیدی است. که روی این لایه دانه های هرمی شکل در جهت مرزدانه های لایه اکسیدی متشکل اند (شکل 7-الف). این دانه ها جزیره های کوچکی بر روی سطح نمونه تشکیل داده اند. نتایج تحلیل EDS از سطح نمونه نشان می دهد. که لایه سیاه رنگ شامل عناصر کروم، منگنز، اکسیژن و مقدار کمی عنصر آهن است. و دانه های هرمی شکل شامل عناصر کروم، منگنز و اکسیژن است (جدول 3). نتایج تحلیل پراش پرتو ایکس نشان می دهد. که لایه اکسیدی سیاه رنگ شامل اکسیدهای اسپینلی MnCr2O4 و FeCr2O4 است

 

. و ذرات هرمی شکل فقط رسوبات MnCr2O4 هستند (شکل 7). شکل (6-ب) سطح نمونه پوشش داده شده را بعد از 500 ساعت اکسیداسیون نشان می دهد که شامل ذرات هرمی شکل است. و علامت قابل توجهی از ترک و یا پوسته شدن در سطح آن دیده نمی شود. تحلیل پراش پرتو ایکس نشان می دهد که سطح نمونه پوشش داده شده بعد از اکسیداسیون شامل اکسیدهای اسپینلی MnCr2O4،MnCo2O4،Co3O4 و FeCr2O4 است (شکل8).

 

شکل (9) تصویر میکروسکوپی الکترونی روبشی و تحلیل پراش انرژی پرتو ایکس از مقطع عرضی مورد پولیش . نمونه های عاری از پوشش (شکل 8-الف و 8-ب) و مورد پوشش با کامپوزیت Co/Y2O3 (شکل 9-ج و 9-د) را نشان می دهد. در هر دو نمونه دو لایه روی زیر لایه فولادی مشاهده می شود. سطح نمونه بدون پوشش شامل یک لایه خارجی غنی از اکسید منگنز -کروم. و یک لایه داخلی غنی از اکسید کروم است که با نتایج سایر محققین مطابقت دارد.

 

ضخامت این لایه های اکسیدی همانطور که در شکل (9-الف) و (9-ب) نشان داده شده است. حدود سه میکرومتر است. تحلیل پراش پرتو ایکس تأیید می کند. که لایه داخلی اکسید کروم و لایه خارجی اکسید اسپینلی MnCr2O4 به علاوه مقدار کمی FeCe2O4 است (شکل 8). سطح نمونه پوشش داده شده نیز شامل یک لایه داخلی غنی از اکسید کروم و یک لایه خارجی غنی از اکسیدهای کبالت و منگنز-کبالت است. آنالیز نقشه عنصری از مقطع عرضی نمونه تشکیل این اکسیدهای اسپینلی را تائید می کند. ذرات Y2O3 که قبل از اکسیداسیون در سطح

 

نمونه پوشش داده شده مشاهده می شدند. (شکل 3-الف) بعد از اکسیداسیون روی سطح قابل مشاهده نیستند (شکل 7-ب)، اما در داخل لایه اکسید کبالت خارجی معلوم و مشخص میشود (شکل 9-ج). زیرا این ذرات در اثر رشد لایه اکسید کبالت به دلیل نفوذ یون های فلزی و اکسیژن، در این لایه فرو رفته اند. و در تصویر مقطع عرضی پوشش قابل مشاهده هستند. توزیع عناصر ایتریم و اکسیژن در مقطع نمونه پوشش دهی می شود. که به وسیله آنالیز map عنصری در شکل های (10-د) و (10-و) معلوم و مشخص است. نیز وجود ذرات اکسید ایتریم را در مقطع عرضی پوشش اثبات می کند. لایه اکسید اسپینلی کبالت چسبندگی خوبی به لایه اکسید داخلی و نیز زیرلایه فولادی دارد (شکل 9-ج).

 

نفوذ عناصر در فصل مشترک پوشش و زیر لایه مسئله رایجی است. در تحقیقات مورد انجام توسط کروکاوا و جالانتا مشخص شد که منگنز. آهن و کروم می توانند از طریق مکانیزم نفوذ حجمی و از طریق مکانیزم مرزدانه. در اسپینل های Co و Mn-Cr و در دمای 800 درجه سانتی گراد نفوذ کنند. ابتدا همزمان با تشکیل پوشش Co/Y2O3، نفوذ Co از پوشش به زیرلایه و نفوذ Fe و Cr از زیرلایه به سمت پوشش رخ می دهد. اما مقدار نفوذ این عناصر بسیار کم است. Cr و Fe در طول مراحل اولیه اکسیداسیون نیز نفوذ می کنند.

 

که این امر منجر به مشاهد Fe در پروفیل لایه اسپینلی بعد از اکسیداسیون می گردد (شکل 9-د). آنالیز Map عنصری نیز نفوذ این عناصر را تأیید می کند (شکل 10). اما از آنجایی که انرژی آزاد منفی تشکیل اکسید کروم بیشتر از انرژی آزاد تشکیل اکسید آهن است. اکسید کروم پایدارتر از اکسید آهن است. بنابراین لایه Cr2O3 در فصل مشترک پوشش و زیرلایه تشکیل می شود. از سوی دیگر با توجه به اینکه ضریب نفوذ یون های فلزی در ترتیب DMn>DFe>DCr کاهش می یابد. به دلیل ضریب نفوذ بالاتر یونهای منگنز، از زیرلایه به سمت سطح فولاد لایه اسپینلی MnCr2O4 روی سطح لایه اکسیدی Cr2O3 تشکیل می شود. بنابراین فشار جزئی موضعی اکسیژن در اثر تشکیل MnCr2O4 و Cr2O3 بسیار کاهش یافته و برای تشکیل اکسید آهن بسیار کم است.

 

فولاد Crofer 22apu

مقایسه تصاویر شکل (9) نشان می دهد. که ضخامت لایه Cr2O3 تشکیلی روی نمونه بدون پوشش حدود دو میکرومتر است. در حالی که ضخامت لایه Cr2O3 تشکیلی روی نمونه مورد پوشش دهی حدود 700 نانومتر است. بنابراین لایه پوشش نرخ رشد لایه Cr2O3 را به حدود یک سوم کاهش می دهد. این لایه پوشش محافظ از نفوذ کروم به سمت خارج و نفوذ اکسیژن به سمت داخل فولاد جلوگیری کرده. و به همین دلیل نرخ رشد لایه اکسیدی Cr2O3 را کاهش می دهد . اثر اکسید عناصر اکتیو در کاهش رشد لایه اکسیدی Cr2O3. با توجه به اثر این عناصر بر افزایش مقاومت به اکسیداسیون فولادهای مشابه هنگامی که به عنوان پوشش روی این آلیاژها اعمال می شوند. توضیح داده می شود.

5-3- رفتار الکتریکی

پوشش مورد اعمال روی اتصال دهنده داخلی در پیل های سوختی اکسید جامد باید دارای مقاومت الکتریکی سطحی کمی باشد.

 

تا هدایت الکتریکی بین الکترودهای سلول های مجاور را افزایش دهد. بنابراین برای نشان دادن مفید بودن پوشش کامپوزیتی اعمال شده روی اتصال دهنده فولادی باید ثابت کرد. که این پوشش در شرایط کاری پیل های سوختی اکسید جامد، هدایت الکتریکی بالاتری در مقایه با نمونه بدون پوشش دارد. بدین منظور مقدار مقاومت الکتریکی سطحی نمونه ها بعد از 500 ساعت اکسیداسیون در هوا در 800 درجه سانتی گراد اندازه گیری شد. شکل(11) نمودار وابستگی مقاومت الکتریکی سطحی به دما را نشان می دهد. مقدار مقاومت الکتریکی سطحی با افزایش دما از 650 تا 800 درجه سانتی گراد کاهش می یابد. این رفتار مشابه رفتار مواد نیمه رساناست. که نشان می دهد هدایت الکتریکی با دما فعال می شود. مقدار مقاومت الکتریکی سطحی در این مواد با استفاده از رابطه (2) محاسبه می شود.

فولاد Crofer 22apu

 

که در آن A ثابت تناسب، T دما بر حسب کلوین. Ea انرژی اکتیواسیون برای هدایت از شیب نمودار (ASR/T) log بر حسب (T/1) محاسبه می شود (شکل 11). مقدار انرژی اکتیواسیون برای نمونه بدون پوشش برابر 26/22 کیلوژول بر مول و برای نمونه پوشش دهی شود. برای 11/53 کیلوژول بر مول به دست آمد. نمونه پوشش دهی میشود. در تمام محدوده های دمایی بررسی شده مقدار مقاومت الکتریکی سطحی کمتری از خود نشان می دهد. که این امر دلیلی بر اثر مفید پوشش اعمالی در جهت جلوگیری از تشکیل و رشد لایه های اکسیدی.

 

با مقاومت الکتریکی بالا مانند Cr2O3 است. دلیل مقدار مقاومت الکتریکی سطحی کمتر نمونه پوشش دهی میشود. تشکیل ترکیبات اسپینلی در طول فرآیند اکسیداسیون است. این ترکیبات اسپینلی که دارای ساختار مکعبی به صورت، A1+XB2-XO4 هستند. دارای آنیون های اکسیژن که مرکز وجود را پر می کنند. و کاتیون های A و B از عناصر مشابه دارای والانس های متفاوت نیز هستند. این کاتیون ها موقعیت های اکتاهدرال یا تتراهدرال را پر می کنند. بنابراین امکان انتقال راحت تر الکترون ها بین کاتیون های مجاور با والانس مشخص وجود دارد. این امر هدایت الکتریکی ترکیبات اسپینلی را افزایش می دهد. تحقیقات نشان می دهد که انرژی اکتیواسیون برای انتقال الکترون ها با جانشینی یون های چهار ظرفیتی شبیه منگنز کاهش می یابد.

 

بنابراین اگرچه وجود منگنز در پوشش ممکن است پارامتر شبکه و نفوذ سربالایی کروم را افزایش دهد. اما هدایت الکتریکی پوشش را افزایش می دهد. از سوی دیگر، کبالت یک عنصر نوع P است. که تأثیر مهمی روی افزایش هدایت الکتتریکی ترکیبات اسپینلی مانند MnCo2O4 شصت ثانیه بر سانتی متر. CoCr2O4 هفت و چهار دهم ثانیه بر سانتی متر و CoFe2O4 نود و سه صدم بر سانتی متر. در مقایسه با ترکیباتی مانند Cr2O3 دو صدم ثانیه بر سانتی متر.

 

و Mn,Cr) 3O4) پنچ دهم ثانیه بر سانتی متر برای MnCr2O4. و دو صدم ثانیه بر سانتی متر برای Mn1.2 Cr1.8O4 دارد. مقدار مقاومت الکتریکی سطحی کمتر نمونه پوششی در مقایسه با نمونه بدور از پوشش نشان می دهد. که ذرات Y2O3 عوامل مخربی برای هدایت الکتریکی پوشش نیستند و با کاهش نرخ اکسیداسیون نمونه پوشش می شدند. و بهبود چسبندگی پوشش به زیر لایه باعث افزایش هدایت الکتریکی نیز می شوند.

شکل (12) تغییرات مقاومت الکتریکی سطحی نمونه ها بر حسب زمان اکسیداسیون را در هوا در 800 درجه سانتی گراد نشان می دهد. مقدار مقاومت الکتریکی سطحی نمونه در تمام محدوده زمانی با افزایش زمان افزایش می یابد. بعد از 200 ساعت اکسیداسیون، مقدار مقاومت الکتریکی سطحی برای نمونه بدون پوشش برابر 25/9 میلی اهم بر سانتی متر مربع. و برای نمونه مورد پوشش برابر 15/8 میلی اهم بر سانتی متر مربع است. بایستی توجه داشت که مقدار مقاومت الکتتریکی سطحی یک اتصال دهنده فلزی پوشش داده شده.

 

با یک پوشش محافظ تحت تأثیر لایه پوشش و لایه اکسیدی که در فصل مشترک فلز و پوشش. در طی شرایط کاری پیل های سوختی اکسید جامد تشکیل می شود، است. بنابراین یکی از عوامل مهمی که باعث کاهش مقاومت الکتریکی سطحی نمونه پوشش داده شده است. ضخامت کمتر لایه اکسیدی Cr2O3 در این نمونه (حدود 700نانومتر) در مقایسه با نمونه بدون پوشش (حدود دو میکرومتر) است. زیرا این لایه اکسیدی مقاومت الکتریکی بالایی دارد. به طور کلی مقدار مقاومت الکتریکی سطحی کمتر نمونه مورد پوشش نشان می دهد که تأثیر مثبت پوشش اعمالی روی اتصال دهنده فولادی است.

4- نتیجه گیری

1- پوشش کامپوزیتی Co/Y2O3 با چسبندگی خوب روی فولاد زنگ نزن فریتی Crofer 22APU به روش آبکاری الکتریکی با جریان مستقیم تشکیل شد.

2- پوشش اعمالی باعث کاهش نرخ خوردگی فولاد Crofer 22APU. در محدوده 100 تا 500 ساعت اکسیداسیون در هوا در دمای 800 درجه سانتی گراد شد.

3-یک پوسته اکسیدی دو لایه روی نمونه پوشش داده شده با Co/Y2O3. بعد از 500 ساعت اکسیداسیون در هوا در دمای 800 درجه سانتی گراد تشکیل شد. که لایه داخلی آن شامل عناصر کروم و اکسیژن و لایه خارجی آن شامل عناصر کبالت، کروم، منگنز، اکسیژن، آهن و ایتریم بود.

4- تحلیل پراش انرژی پرتو ایکس نشان داد که ضخامت پوسته اکسیدی Cr2O3. در نمونه بدون پوشش حدود سه برابر نمونه دارای پوشش می گردد.

اندازه گیری مقدار مقاومت الکتریکی سطحی نمونه ها بر حسب دما نشان داد که نمونه ها رفتاری مشابه مواد نیمه رسانا دارند. و همواره مقدار مقاومت الکتریکی سطحی نمونه پوشش داده شده کمتر از نمونه بدون پوشش است.

 

فاطمه سعید پور، مرتضی زند رحیمی، هادی ابراهیمی فر.

1- دانشکده مهندسی مواد، مجتمع آموزش عالی فنی و مهندسی اسفراین. 2-دانشکده مهندسی مواد، دانشگاه شهید باهنر کرمان. 3-دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

مواد پیشرفته در مهندسی، سال 38، شماره 1،بهار 1398

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد CROFER 22APU, بررسی خواص فولاد CROFER 22APU پوشش داده شده ,



بازدید : 176
نویسنده : جواد دلاکان

فولاد از جمله پرکاربردترین و در دسترس ترین آلیاژ آهن است که انواع مختلفی از آن تولید و روانه بازار شده است. از فولادهای مشهور و پرکاربرد می توان به انواع ST اشاره نمود. که جزئی از فولادهای ساختمانی و کربنی معمولی یا فولادهای ساخت و ساز غیر آلیاژی است.

ورق st44-فولاد st44-میلگرد st44-لوله st44-نبشی st44-تیرآهن st44

ورق st44

st44 یکی از این نوع فولادهاست که در گروه فولادهای نرم (mild steel) با کربن کمتر از 0.21 درصد (فولادهای کم کربن) قرار می گیرند. و دارای خواص شکل پذیری سرد، جوشکاری و برشکاری عالی است. این فولاد در شکل های مختلف از جمله ورق، میلگرد، تیر آهن، نبشی و انواع لوله تولید می شود.

 

این فولاد در صنعت، از پر مصرف ترین آلیاژهای فلزی است. به دلیل خواص شکل پذیری، برشکاری، جوشکاری عالی، خواص مکانیکی و قیمت مناسب. بیشترین استفاده را به عنوان مصالح ساختمانی در ساخت و ساز سازه ها. و اسکلت های فلزی بناها و ساختمان ها، پل ها، سازه های شهری و غیره دارد. بیشترین مصرف این فولادها نیز همین کاربری است.

کاربرد st44

فولاد St44 که به فولاد 1.0044 نیز معروف است. و می تواند به شکل های مختلفی نظیر ورق، میلگرد، تیر آهن، نبشی و انواع لوله به کار رود. بیشترین کاربرد این فولاد در ساخت و ساز است. و موارد مصرفی بسیاری نیز دارد. از این فولاد می توان در شاسی ماشین آلات سنگین، ریل ها و دیواره قطعات صنعتی استفاده نمود.

ترکیب شیمیایی فولاد st44

ترکیب شیمیایی فولاد st44 به این شرح است:

cu:0.55

S:0.035

P:0.035

Mn:1.5

N:0.012

C:0.21

خواص مکانیکی

فولاد st44 از خواص مکانیکی خاص خود برخوردار است. در خواص مکانیکی st44 آمده است که تنش تسلیم آن ((N/(mm)^2))195-275 است و استحکام کشش نهایی (N/(mm)^2)) 380-580 برخوردار است. ازدیاد طول این فولاد (min) 13% و حداقل انرژی ضربه آن (J) 27 است.

قیمت لوله این نوع فولاد

لوله فولادی st44 از زیر مجموعه های st44 است. این لوله، لوله ای استوانه ای، بلند و توخالی با دو سر باز و دایره ای شکل است. که امروزه در صنعت و ساختمان سازی کاربرد فراوانی دارد. در صورت تمایل به خرید با کارشناسان ما تماس حاصل فرمایید.

ورق سیاه فولاد st44

از دیگر گریدهای ورق، ورق سیاه فولاد st44 است. که از درصد کربن کم تشکیل شده و به همین دلیل از مقاطع فولادی کم کربن به شمار می رود. این ورق دارای ترکیب شیمیایی زیر است.

0.22 کربن

0.55 مس

1.5 منگنز

0.040 فسفر

0.050 گوگرد

0.012 نیتروژن

این آلیاژ باعث شده است که ورق st44 دارای قابلیت شکل پذیری زیاد. خاصیت ضد سایشی فوق العاده، قابلیت ماشین کاری و جوش پذیری قابل قبولی باشد.

 

تنها تفاوت ورق st44 با ورق st52 در درصد کربن به کار رفته در آلیاژ آنهاست. درصد کربن ورق st52 کمی بیشتر است که همین امر باعث شده است که مقدار مقاومت کششی بیشتری نسبت به ورق st44 داشته باشد.

ورق فولاد st44 در صخامت های 2 تا 15 میلی متر و عرض های متفاوت 100 تا 150 سانتی متر ساخته می شود. استحکام کششی فولاد فولادی St44-380-580 نیوتون بر میلی متر مربع و استحکام تسلیمی آن در کمترین میزان برابر با 275 نیوتن بر میلیمتر مربع است.

کاربردها

از کاربردهای ورق st44 می توان به مواردی چون: ساخت قطعات و تجهیزات صنعتی، ساخت قطعات هواپیما، ساختمان سازی، ریل سازی و … اشاره کرد.

تفاوت ورق سیاه st44 با st52 و st37

ورق st52 به دلیل دارا بودن درصد بیشتری از عناصری چون کربن و منگنز مقاومت بیشتری نسبت به دو ورق دیگر دارد. این ورق دارای مقاومت پیچشی و خمشی بالاتری است و وزن بیشتری را نسبت به دو نوع دیگر تحمل می نماید.

انعطاف پذیری ورق st44 و ورق st37 به دلیل درصد پایین تر کربن بیشتر است.

وزن مخصوص تمام این ورق ها یکسان می باشد. اما به دلیل استحکام بیشتر ورق st52 از آن در مواردی که نباید وزن سازه زیاد باشد، استفاده می کنند.

ورق های سیاه در انواع گریدها توسط کارخانجات متعددی چون فولاد مبارکه اصفهان، فولاد گیلان، فولاد اکسیژن خوزستان، مجتمع فولاد سبا و … تولید می شوند. تنها تفاوت مهم ورق های تولیدی در کاخانجات متفاوت، ابعاد آنها است. برای مثال ورق سیاه فولاد مبارکه در ضخامت هاغی 2,2.5,3,4,5,6,8,10,12,15 میلیمتر و در عرض های 1,1.25,1.5 متر تولید می شود.

 

اما ورق سیاه اکسین اهواز در ضخامت های 40,30,20,15,12,10,8 میلیمتر و در ابعاد 6*2 و 12*2 تولید می شوند.

شایان ذکر است که ورق های سیاه تولیدی در کارخانه فولاد مبارکه از نظر ویژگی و ابعاد با ورق سیاه فولاد سبا یکسان است. چرا که مجتمع فولاد سبا زیر مجموعه ای از کارخانه فولاد مبارکه محسوب می شود.

مشخصات فنی انواع ورق سیاه

انواع ورق سیاه مطابق با استاندارد قدیمی DIN 17100 و یا استاندارد جدید BS EN 10025 تولید می شوند. این ورق ها در ضخامت های 1.5 میلیمتر تا 100 میلیمتر تولید می شوند. عرض این ورق ها معمولاً 2,1.5,1 متر است. و از نظر طولی بدون محدودیت در بازار عرضه می گردند. این ورق ها به صورت رولی و یا شیت بندی شده عدل بندی می شوند.

وزن ورق آهن نیز توسط فرمول ها محاسبه می شود. و به طول، عرض و ضخامت آن بستگی دارد.

تفاوت قیمت ورق سیاه st37,st44,st52

همانطور که این سه نوع ورق از نظر ویژگی و کاربرد تفاوت های کمی با یکدیگر دارند. تفاوت قیمت ورق st37,st44,st52 نیز مشهود است. اما از نظر اقتصادی در بعضی از کاربری ها، مثل سازه هایی که نباید وزن سازه زیاد شود. استفاده از ورق st52 به صرفه تر خواهد بود. چرا که استحکام بیشتری دارد و میزان مصرف را کاهش می دهد.

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: ورق ST44,لوله ST44,فولاد ST44,ميلگرد ST44,تيرآهن ST44,نبشي ST44, ,